firmware/src/mesh/Router.cpp

130 lines
5.3 KiB
C++
Raw Normal View History

#include "Router.h"
#include "CryptoEngine.h"
#include "GPS.h"
#include "configuration.h"
#include "mesh-pb-constants.h"
#include <NodeDB.h>
/**
* Router todo
*
2020-04-17 18:52:20 +00:00
* DONE: Implement basic interface and use it elsewhere in app
* Add naive flooding mixin (& drop duplicate rx broadcasts), add tools for sending broadcasts with incrementing sequence #s
* Add an optional adjacent node only 'send with ack' mixin. If we timeout waiting for the ack, call handleAckTimeout(packet)
* Add DSR mixin
*
**/
#define MAX_RX_FROMRADIO \
4 // max number of packets destined to our queue, we dispatch packets quickly so it doesn't need to be big
// I think this is right, one packet for each of the three fifos + one packet being currently assembled for TX or RX
#define MAX_PACKETS \
(MAX_RX_TOPHONE + MAX_RX_FROMRADIO + MAX_TX_QUEUE + \
2) // max number of packets which can be in flight (either queued from reception or queued for sending)
MemoryPool<MeshPacket> packetPool(MAX_PACKETS);
/**
* Constructor
*
* Currently we only allow one interface, that may change in the future
*/
Router::Router() : fromRadioQueue(MAX_RX_FROMRADIO) {}
/**
* do idle processing
* Mostly looking in our incoming rxPacket queue and calling handleReceived.
*/
void Router::loop()
{
MeshPacket *mp;
while ((mp = fromRadioQueue.dequeuePtr(0)) != NULL) {
handleReceived(mp);
}
}
/**
* Send a packet on a suitable interface. This routine will
* later free() the packet to pool. This routine is not allowed to stall.
* If the txmit queue is full it might return an error.
*/
ErrorCode Router::send(MeshPacket *p)
{
// If the packet hasn't yet been encrypted, do so now (it might already be encrypted if we are just forwarding it)
assert(p->which_payload == MeshPacket_encrypted_tag ||
p->which_payload == MeshPacket_decoded_tag); // I _think_ all packets should have a payload by now
// First convert from protobufs to raw bytes
if (p->which_payload == MeshPacket_decoded_tag) {
static uint8_t bytes[MAX_RHPACKETLEN]; // we have to use a scratch buffer because a union
size_t numbytes = pb_encode_to_bytes(bytes, sizeof(bytes), SubPacket_fields, &p->decoded);
assert(numbytes <= MAX_RHPACKETLEN);
crypto->encrypt(p->from, p->id, numbytes, bytes);
// Copy back into the packet and set the variant type
memcpy(p->encrypted.bytes, bytes, numbytes);
p->encrypted.size = numbytes;
p->which_payload = MeshPacket_encrypted_tag;
}
2020-04-23 19:48:00 +00:00
if (iface) {
// DEBUG_MSG("Sending packet via interface fr=0x%x,to=0x%x,id=%d\n", p->from, p->to, p->id);
2020-04-23 19:48:00 +00:00
return iface->send(p);
} else {
DEBUG_MSG("Dropping packet - no interfaces - fr=0x%x,to=0x%x,id=%d\n", p->from, p->to, p->id);
packetPool.release(p);
2020-04-23 19:48:00 +00:00
return ERRNO_NO_INTERFACES;
}
}
/**
* Every (non duplicate) packet this node receives will be passed through this method. This allows subclasses to
* update routing tables etc... based on what we overhear (even for messages not destined to our node)
*/
void Router::sniffReceived(MeshPacket *p)
{
DEBUG_MSG("Sniffing packet not sent to us fr=0x%x,to=0x%x,id=%d\n", p->from, p->to, p->id);
}
/**
* Handle any packet that is received by an interface on this node.
* Note: some packets may merely being passed through this node and will be forwarded elsewhere.
*/
void Router::handleReceived(MeshPacket *p)
{
// FIXME, this class shouldn't EVER need to know about the GPS, move getValidTime() into a non gps dependent function
// Also, we should set the time from the ISR and it should have msec level resolution
2020-05-04 18:15:05 +00:00
p->rx_time = getValidTime(); // store the arrival timestamp for the phone
assert(p->which_payload ==
MeshPacket_encrypted_tag); // I _think_ the only thing that pushes to us is raw devices that just received packets
// FIXME - someday don't send routing packets encrypted. That would allow us to route for other channels without
// being able to decrypt their data.
// Try to decrypt the packet if we can
static uint8_t bytes[MAX_RHPACKETLEN];
memcpy(bytes, p->encrypted.bytes,
p->encrypted.size); // we have to copy into a scratch buffer, because these bytes are a union with the decoded protobuf
crypto->decrypt(p->from, p->id, p->encrypted.size, bytes);
// Take those raw bytes and convert them back into a well structured protobuf we can understand
if (!pb_decode_from_bytes(bytes, p->encrypted.size, SubPacket_fields, &p->decoded)) {
DEBUG_MSG("Invalid protobufs in received mesh packet, discarding.\n");
} else {
// parsing was successful, queue for our recipient
p->which_payload = MeshPacket_decoded_tag;
sniffReceived(p);
uint8_t ourAddr = nodeDB.getNodeNum();
if (p->to == NODENUM_BROADCAST || p->to == ourAddr) {
DEBUG_MSG("Notifying observers of received packet fr=0x%x,to=0x%x,id=%d\n", p->from, p->to, p->id);
notifyPacketReceived.notifyObservers(p);
}
}
packetPool.release(p);
}