Fix missing IFNDEF and IFDEF in main-esp32.cpp when EXCLUDE_WIFI is defined.

Moved IFDEF HAS_NETWORK to beginning of MQTT:runOnce (to catch when EXCLUDE_WIFI is defined)
This commit is contained in:
Talie5in 2024-06-06 22:52:11 +09:30
parent 1f9f885aca
commit a5c96a29d5
2 changed files with 128 additions and 122 deletions

View File

@ -396,6 +396,7 @@ bool MQTT::wantsLink() const
int32_t MQTT::runOnce() int32_t MQTT::runOnce()
{ {
#ifdef HAS_NETWORKING
if (!moduleConfig.mqtt.enabled || !(moduleConfig.mqtt.map_reporting_enabled || channels.anyMqttEnabled())) if (!moduleConfig.mqtt.enabled || !(moduleConfig.mqtt.map_reporting_enabled || channels.anyMqttEnabled()))
return disable(); return disable();
@ -408,7 +409,7 @@ int32_t MQTT::runOnce()
publishQueuedMessages(); publishQueuedMessages();
return 200; return 200;
} }
#ifdef HAS_NETWORKING
else if (!pubSub.loop()) { else if (!pubSub.loop()) {
if (!wantConnection) if (!wantConnection)
return 5000; // If we don't want connection now, check again in 5 secs return 5000; // If we don't want connection now, check again in 5 secs

View File

@ -24,121 +24,126 @@
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !MESHTASTIC_EXCLUDE_BLUETOOTH #if !defined(CONFIG_IDF_TARGET_ESP32S2) && !MESHTASTIC_EXCLUDE_BLUETOOTH
void setBluetoothEnable(bool enable) void setBluetoothEnable(bool enable)
{ {
#ifndef MESHTASTIC_EXCLUDE_WIFI
if (!isWifiAvailable() && config.bluetooth.enabled == true) { if (!isWifiAvailable() && config.bluetooth.enabled == true) {
if (!nimbleBluetooth) { #endif
nimbleBluetooth = new NimbleBluetooth(); #ifdef MESHTASTIC_EXCLUDE_WIFI
if (config.bluetooth.enabled == true) {
#endif
if (!nimbleBluetooth) {
nimbleBluetooth = new NimbleBluetooth();
}
if (enable && !nimbleBluetooth->isActive()) {
nimbleBluetooth->setup();
}
// For ESP32, no way to recover from bluetooth shutdown without reboot
// BLE advertising automatically stops when MCU enters light-sleep(?)
// For deep-sleep, shutdown hardware with nimbleBluetooth->deinit(). Requires reboot to reverse
} }
if (enable && !nimbleBluetooth->isActive()) {
nimbleBluetooth->setup();
}
// For ESP32, no way to recover from bluetooth shutdown without reboot
// BLE advertising automatically stops when MCU enters light-sleep(?)
// For deep-sleep, shutdown hardware with nimbleBluetooth->deinit(). Requires reboot to reverse
} }
}
#else #else
void setBluetoothEnable(bool enable) {} void setBluetoothEnable(bool enable) {}
void updateBatteryLevel(uint8_t level) {} void updateBatteryLevel(uint8_t level) {}
#endif #endif
void getMacAddr(uint8_t *dmac) void getMacAddr(uint8_t * dmac)
{ {
assert(esp_efuse_mac_get_default(dmac) == ESP_OK); assert(esp_efuse_mac_get_default(dmac) == ESP_OK);
} }
#ifdef HAS_32768HZ #ifdef HAS_32768HZ
#define CALIBRATE_ONE(cali_clk) calibrate_one(cali_clk, #cali_clk) #define CALIBRATE_ONE(cali_clk) calibrate_one(cali_clk, #cali_clk)
static uint32_t calibrate_one(rtc_cal_sel_t cal_clk, const char *name) static uint32_t calibrate_one(rtc_cal_sel_t cal_clk, const char *name)
{ {
const uint32_t cal_count = 1000; const uint32_t cal_count = 1000;
// const float factor = (1 << 19) * 1000.0f; unused var? // const float factor = (1 << 19) * 1000.0f; unused var?
uint32_t cali_val; uint32_t cali_val;
for (int i = 0; i < 5; ++i) { for (int i = 0; i < 5; ++i) {
cali_val = rtc_clk_cal(cal_clk, cal_count); cali_val = rtc_clk_cal(cal_clk, cal_count);
}
return cali_val;
} }
return cali_val;
}
void enableSlowCLK() void enableSlowCLK()
{ {
rtc_clk_32k_enable(true); rtc_clk_32k_enable(true);
CALIBRATE_ONE(RTC_CAL_RTC_MUX); CALIBRATE_ONE(RTC_CAL_RTC_MUX);
uint32_t cal_32k = CALIBRATE_ONE(RTC_CAL_32K_XTAL); uint32_t cal_32k = CALIBRATE_ONE(RTC_CAL_32K_XTAL);
if (cal_32k == 0) { if (cal_32k == 0) {
LOG_DEBUG("32K XTAL OSC has not started up\n"); LOG_DEBUG("32K XTAL OSC has not started up\n");
} else { } else {
rtc_clk_slow_freq_set(RTC_SLOW_FREQ_32K_XTAL); rtc_clk_slow_freq_set(RTC_SLOW_FREQ_32K_XTAL);
LOG_DEBUG("Switching RTC Source to 32.768Khz succeeded, using 32K XTAL\n"); LOG_DEBUG("Switching RTC Source to 32.768Khz succeeded, using 32K XTAL\n");
CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_32K_XTAL);
}
CALIBRATE_ONE(RTC_CAL_RTC_MUX); CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_32K_XTAL); CALIBRATE_ONE(RTC_CAL_32K_XTAL);
if (rtc_clk_slow_freq_get() != RTC_SLOW_FREQ_32K_XTAL) {
LOG_WARN("Failed to switch 32K XTAL RTC source to 32.768Khz !!! \n");
return;
}
} }
CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_32K_XTAL);
if (rtc_clk_slow_freq_get() != RTC_SLOW_FREQ_32K_XTAL) {
LOG_WARN("Failed to switch 32K XTAL RTC source to 32.768Khz !!! \n");
return;
}
}
#endif #endif
void esp32Setup() void esp32Setup()
{ {
uint32_t seed = esp_random(); uint32_t seed = esp_random();
LOG_DEBUG("Setting random seed %u\n", seed); LOG_DEBUG("Setting random seed %u\n", seed);
LOG_DEBUG("Total heap: %d\n", ESP.getHeapSize()); LOG_DEBUG("Total heap: %d\n", ESP.getHeapSize());
LOG_DEBUG("Free heap: %d\n", ESP.getFreeHeap()); LOG_DEBUG("Free heap: %d\n", ESP.getFreeHeap());
LOG_DEBUG("Total PSRAM: %d\n", ESP.getPsramSize()); LOG_DEBUG("Total PSRAM: %d\n", ESP.getPsramSize());
LOG_DEBUG("Free PSRAM: %d\n", ESP.getFreePsram()); LOG_DEBUG("Free PSRAM: %d\n", ESP.getFreePsram());
nvs_stats_t nvs_stats; nvs_stats_t nvs_stats;
auto res = nvs_get_stats(NULL, &nvs_stats); auto res = nvs_get_stats(NULL, &nvs_stats);
assert(res == ESP_OK); assert(res == ESP_OK);
LOG_DEBUG("NVS: UsedEntries %d, FreeEntries %d, AllEntries %d, NameSpaces %d\n", nvs_stats.used_entries, LOG_DEBUG("NVS: UsedEntries %d, FreeEntries %d, AllEntries %d, NameSpaces %d\n", nvs_stats.used_entries,
nvs_stats.free_entries, nvs_stats.total_entries, nvs_stats.namespace_count); nvs_stats.free_entries, nvs_stats.total_entries, nvs_stats.namespace_count);
LOG_DEBUG("Setup Preferences in Flash Storage\n"); LOG_DEBUG("Setup Preferences in Flash Storage\n");
// Create object to store our persistent data // Create object to store our persistent data
Preferences preferences; Preferences preferences;
preferences.begin("meshtastic", false); preferences.begin("meshtastic", false);
uint32_t rebootCounter = preferences.getUInt("rebootCounter", 0); uint32_t rebootCounter = preferences.getUInt("rebootCounter", 0);
rebootCounter++; rebootCounter++;
preferences.putUInt("rebootCounter", rebootCounter); preferences.putUInt("rebootCounter", rebootCounter);
preferences.end(); preferences.end();
LOG_DEBUG("Number of Device Reboots: %d\n", rebootCounter); LOG_DEBUG("Number of Device Reboots: %d\n", rebootCounter);
#if !MESHTASTIC_EXCLUDE_BLUETOOTH #if !MESHTASTIC_EXCLUDE_BLUETOOTH
String BLEOTA = BleOta::getOtaAppVersion(); String BLEOTA = BleOta::getOtaAppVersion();
if (BLEOTA.isEmpty()) { if (BLEOTA.isEmpty()) {
LOG_DEBUG("No OTA firmware available\n"); LOG_DEBUG("No OTA firmware available\n");
} else { } else {
LOG_DEBUG("OTA firmware version %s\n", BLEOTA.c_str()); LOG_DEBUG("OTA firmware version %s\n", BLEOTA.c_str());
} }
#else #else
LOG_DEBUG("No OTA firmware available\n"); LOG_DEBUG("No OTA firmware available\n");
#endif #endif
// enableModemSleep(); // enableModemSleep();
// Since we are turning on watchdogs rather late in the release schedule, we really don't want to catch any // Since we are turning on watchdogs rather late in the release schedule, we really don't want to catch any
// false positives. The wait-to-sleep timeout for shutting down radios is 30 secs, so pick 45 for now. // false positives. The wait-to-sleep timeout for shutting down radios is 30 secs, so pick 45 for now.
// #define APP_WATCHDOG_SECS 45 // #define APP_WATCHDOG_SECS 45
#define APP_WATCHDOG_SECS 90 #define APP_WATCHDOG_SECS 90
res = esp_task_wdt_init(APP_WATCHDOG_SECS, true); res = esp_task_wdt_init(APP_WATCHDOG_SECS, true);
assert(res == ESP_OK); assert(res == ESP_OK);
res = esp_task_wdt_add(NULL); res = esp_task_wdt_add(NULL);
assert(res == ESP_OK); assert(res == ESP_OK);
#ifdef HAS_32768HZ #ifdef HAS_32768HZ
enableSlowCLK(); enableSlowCLK();
#endif #endif
} }
#if 0 #if 0
// Turn off for now // Turn off for now
@ -160,76 +165,76 @@ uint32_t axpDebugRead()
Periodic axpDebugOutput(axpDebugRead); Periodic axpDebugOutput(axpDebugRead);
#endif #endif
/// loop code specific to ESP32 targets /// loop code specific to ESP32 targets
void esp32Loop() void esp32Loop()
{ {
esp_task_wdt_reset(); // service our app level watchdog esp_task_wdt_reset(); // service our app level watchdog
// for debug printing // for debug printing
// radio.radioIf.canSleep(); // radio.radioIf.canSleep();
} }
void cpuDeepSleep(uint32_t msecToWake) void cpuDeepSleep(uint32_t msecToWake)
{ {
/* /*
Some ESP32 IOs have internal pullups or pulldowns, which are enabled by default. Some ESP32 IOs have internal pullups or pulldowns, which are enabled by default.
If an external circuit drives this pin in deep sleep mode, current consumption may If an external circuit drives this pin in deep sleep mode, current consumption may
increase due to current flowing through these pullups and pulldowns. increase due to current flowing through these pullups and pulldowns.
To isolate a pin, preventing extra current draw, call rtc_gpio_isolate() function. To isolate a pin, preventing extra current draw, call rtc_gpio_isolate() function.
For example, on ESP32-WROVER module, GPIO12 is pulled up externally. For example, on ESP32-WROVER module, GPIO12 is pulled up externally.
GPIO12 also has an internal pulldown in the ESP32 chip. This means that in deep sleep, GPIO12 also has an internal pulldown in the ESP32 chip. This means that in deep sleep,
some current will flow through these external and internal resistors, increasing deep some current will flow through these external and internal resistors, increasing deep
sleep current above the minimal possible value. sleep current above the minimal possible value.
Note: we don't isolate pins that are used for the LORA, LED, i2c, or ST7735 Display for the Chatter2, spi or the wake Note: we don't isolate pins that are used for the LORA, LED, i2c, or ST7735 Display for the Chatter2, spi or the wake
button(s), maybe we should not include any other GPIOs... button(s), maybe we should not include any other GPIOs...
*/ */
#if SOC_RTCIO_HOLD_SUPPORTED #if SOC_RTCIO_HOLD_SUPPORTED
static const uint8_t rtcGpios[] = {/* 0, */ 2, static const uint8_t rtcGpios[] = {/* 0, */ 2,
/* 4, */ /* 4, */
#ifndef USE_JTAG #ifndef USE_JTAG
13, 13,
/* 14, */ /* 15, */ /* 14, */ /* 15, */
#endif #endif
/* 25, */ /* 26, */ /* 27, */ /* 25, */ /* 26, */ /* 27, */
/* 32, */ /* 33, */ 34, 35, /* 32, */ /* 33, */ 34, 35,
/* 36, */ 37 /* 36, */ 37
/* 38, 39 */}; /* 38, 39 */};
for (int i = 0; i < sizeof(rtcGpios); i++) for (int i = 0; i < sizeof(rtcGpios); i++)
rtc_gpio_isolate((gpio_num_t)rtcGpios[i]); rtc_gpio_isolate((gpio_num_t)rtcGpios[i]);
#endif #endif
// FIXME, disable internal rtc pullups/pulldowns on the non isolated pins. for inputs that we aren't using // FIXME, disable internal rtc pullups/pulldowns on the non isolated pins. for inputs that we aren't using
// to detect wake and in normal operation the external part drives them hard. // to detect wake and in normal operation the external part drives them hard.
#ifdef BUTTON_PIN #ifdef BUTTON_PIN
// Only GPIOs which are have RTC functionality can be used in this bit map: 0,2,4,12-15,25-27,32-39. // Only GPIOs which are have RTC functionality can be used in this bit map: 0,2,4,12-15,25-27,32-39.
#if SOC_RTCIO_HOLD_SUPPORTED #if SOC_RTCIO_HOLD_SUPPORTED
uint64_t gpioMask = (1ULL << (config.device.button_gpio ? config.device.button_gpio : BUTTON_PIN)); uint64_t gpioMask = (1ULL << (config.device.button_gpio ? config.device.button_gpio : BUTTON_PIN));
#endif #endif
#ifdef BUTTON_NEED_PULLUP #ifdef BUTTON_NEED_PULLUP
gpio_pullup_en((gpio_num_t)BUTTON_PIN); gpio_pullup_en((gpio_num_t)BUTTON_PIN);
#endif #endif
// Not needed because both of the current boards have external pullups // Not needed because both of the current boards have external pullups
// FIXME change polarity in hw so we can wake on ANY_HIGH instead - that would allow us to use all three buttons (instead of // FIXME change polarity in hw so we can wake on ANY_HIGH instead - that would allow us to use all three buttons (instead
// just the first) gpio_pullup_en((gpio_num_t)BUTTON_PIN); // of just the first) gpio_pullup_en((gpio_num_t)BUTTON_PIN);
#if SOC_PM_SUPPORT_EXT_WAKEUP #if SOC_PM_SUPPORT_EXT_WAKEUP
#ifdef CONFIG_IDF_TARGET_ESP32 #ifdef CONFIG_IDF_TARGET_ESP32
// ESP_EXT1_WAKEUP_ALL_LOW has been deprecated since esp-idf v5.4 for any other target. // ESP_EXT1_WAKEUP_ALL_LOW has been deprecated since esp-idf v5.4 for any other target.
esp_sleep_enable_ext1_wakeup(gpioMask, ESP_EXT1_WAKEUP_ALL_LOW); esp_sleep_enable_ext1_wakeup(gpioMask, ESP_EXT1_WAKEUP_ALL_LOW);
#else #else
esp_sleep_enable_ext1_wakeup(gpioMask, ESP_EXT1_WAKEUP_ANY_LOW); esp_sleep_enable_ext1_wakeup(gpioMask, ESP_EXT1_WAKEUP_ANY_LOW);
#endif #endif
#endif #endif
#endif #endif
// We want RTC peripherals to stay on // We want RTC peripherals to stay on
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
esp_sleep_enable_timer_wakeup(msecToWake * 1000ULL); // call expects usecs esp_sleep_enable_timer_wakeup(msecToWake * 1000ULL); // call expects usecs
esp_deep_sleep_start(); // TBD mA sleep current (battery) esp_deep_sleep_start(); // TBD mA sleep current (battery)
} }