Merge branch 'develop' into bh1750

This commit is contained in:
Tom Fifield 2025-10-22 08:05:44 +11:00 committed by GitHub
commit badf2e4424
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 781 additions and 209 deletions

View File

@ -563,6 +563,7 @@ void UIRenderer::drawDeviceFocused(OLEDDisplay *display, OLEDDisplayUiState *sta
display->setTextAlignment(TEXT_ALIGN_LEFT);
display->setFont(FONT_SMALL);
int line = 1;
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
// === Header ===
#if defined(M5STACK_UNITC6L)
@ -740,7 +741,6 @@ void UIRenderer::drawDeviceFocused(OLEDDisplay *display, OLEDDisplayUiState *sta
int yOffset = (isHighResolution) ? 0 : 5;
std::string longNameStr;
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
if (ourNode && ourNode->has_user && strlen(ourNode->user.long_name) > 0) {
longNameStr = sanitizeString(ourNode->user.long_name);
}
@ -1000,24 +1000,7 @@ void UIRenderer::drawCompassAndLocationScreen(OLEDDisplay *display, OLEDDisplayU
const char *displayLine = ""; // Initialize to empty string by default
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
bool usePhoneGPS = (ourNode && nodeDB->hasValidPosition(ourNode) &&
config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED);
if (usePhoneGPS) {
// Phone-provided GPS is active
displayLine = "Phone GPS";
int yOffset = (isHighResolution) ? 3 : 1;
if (isHighResolution) {
NodeListRenderer::drawScaledXBitmap16x16(x, getTextPositions(display)[line] + yOffset - 5, imgSatellite_width,
imgSatellite_height, imgSatellite, display);
} else {
display->drawXbm(x + 1, getTextPositions(display)[line] + yOffset, imgSatellite_width, imgSatellite_height,
imgSatellite);
}
int xOffset = (isHighResolution) ? 6 : 0;
display->drawString(x + 11 + xOffset, getTextPositions(display)[line++], displayLine);
} else if (config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED) {
// GPS disabled / not present
if (config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED) {
if (config.position.fixed_position) {
displayLine = "Fixed GPS";
} else {
@ -1108,9 +1091,7 @@ void UIRenderer::drawCompassAndLocationScreen(OLEDDisplay *display, OLEDDisplayU
// === Final Row: Altitude ===
char altitudeLine[32] = {0};
int32_t alt = (strcmp(displayLine, "Phone GPS") == 0 && ourNode && nodeDB->hasValidPosition(ourNode))
? ourNode->position.altitude
: geoCoord.getAltitude();
int32_t alt = geoCoord.getAltitude();
if (config.display.units == meshtastic_Config_DisplayConfig_DisplayUnits_IMPERIAL) {
snprintf(altitudeLine, sizeof(altitudeLine), "Alt: %.0fft", alt * METERS_TO_FEET);
} else {

View File

@ -13,45 +13,147 @@ void InkHUD::MapApplet::onRender()
return;
}
// Helper: draw rounded rectangle centered at x,y
auto fillRoundedRect = [&](int16_t cx, int16_t cy, int16_t w, int16_t h, int16_t r, uint16_t color) {
int16_t x = cx - (w / 2);
int16_t y = cy - (h / 2);
// center rects
fillRect(x + r, y, w - 2 * r, h, color);
fillRect(x, y + r, r, h - 2 * r, color);
fillRect(x + w - r, y + r, r, h - 2 * r, color);
// corners
fillCircle(x + r, y + r, r, color);
fillCircle(x + w - r - 1, y + r, r, color);
fillCircle(x + r, y + h - r - 1, r, color);
fillCircle(x + w - r - 1, y + h - r - 1, r, color);
};
// Find center of map
// - latitude and longitude
// - will be placed at X(0.5), Y(0.5)
getMapCenter(&latCenter, &lngCenter);
// Calculate North+East distance of each node to map center
// - which nodes to use controlled by virtual shouldDrawNode method
calculateAllMarkers();
// Set the region shown on the map
// - default: fit all nodes, plus padding
// - maybe overriden by derived applet
// - getMapSize *sets* passed parameters (C-style)
getMapSize(&widthMeters, &heightMeters);
// Set the metersToPx conversion value
calculateMapScale();
// Special marker for own node
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
if (ourNode && nodeDB->hasValidPosition(ourNode))
drawLabeledMarker(ourNode);
// Draw all markers
// Draw all markers first
for (Marker m : markers) {
int16_t x = X(0.5) + (m.eastMeters * metersToPx);
int16_t y = Y(0.5) - (m.northMeters * metersToPx);
// Cross Size
constexpr uint16_t csMin = 5;
constexpr uint16_t csMax = 12;
// Add white halo outline first
constexpr int outlinePad = 1;
int boxSize = 11;
int radius = 2; // rounded corner radius
// Too many hops away
if (m.hasHopsAway && m.hopsAway > config.lora.hop_limit) // Too many mops
printAt(x, y, "!", CENTER, MIDDLE);
else if (!m.hasHopsAway) // Unknown hops
drawCross(x, y, csMin);
else // The fewer hops, the larger the cross
drawCross(x, y, map(m.hopsAway, 0, config.lora.hop_limit, csMax, csMin));
// White halo background
fillRoundedRect(x, y, boxSize + (outlinePad * 2), boxSize + (outlinePad * 2), radius + 1, WHITE);
// Draw inner box
fillRoundedRect(x, y, boxSize, boxSize, radius, BLACK);
// Text inside
setFont(fontSmall);
setTextColor(WHITE);
// Draw actual marker on top
if (m.hasHopsAway && m.hopsAway > config.lora.hop_limit) {
printAt(x + 1, y + 1, "X", CENTER, MIDDLE);
} else if (!m.hasHopsAway) {
printAt(x + 1, y + 1, "?", CENTER, MIDDLE);
} else {
char hopStr[4];
snprintf(hopStr, sizeof(hopStr), "%d", m.hopsAway);
printAt(x, y + 1, hopStr, CENTER, MIDDLE);
}
// Restore default font and color
setFont(fontSmall);
setTextColor(BLACK);
}
// Dual map scale bars
int16_t horizPx = width() * 0.25f;
int16_t vertPx = height() * 0.25f;
float horizMeters = horizPx / metersToPx;
float vertMeters = vertPx / metersToPx;
auto formatDistance = [&](float meters, char *out, size_t len) {
if (config.display.units == meshtastic_Config_DisplayConfig_DisplayUnits_IMPERIAL) {
float feet = meters * 3.28084f;
if (feet < 528)
snprintf(out, len, "%.0f ft", feet);
else {
float miles = feet / 5280.0f;
snprintf(out, len, miles < 10 ? "%.1f mi" : "%.0f mi", miles);
}
} else {
if (meters >= 1000)
snprintf(out, len, "%.1f km", meters / 1000.0f);
else
snprintf(out, len, "%.0f m", meters);
}
};
// Horizontal scale bar
int16_t horizBarY = height() - 2;
int16_t horizBarX = 1;
drawLine(horizBarX, horizBarY, horizBarX + horizPx, horizBarY, BLACK);
drawLine(horizBarX, horizBarY - 3, horizBarX, horizBarY + 3, BLACK);
drawLine(horizBarX + horizPx, horizBarY - 3, horizBarX + horizPx, horizBarY + 3, BLACK);
char horizLabel[32];
formatDistance(horizMeters, horizLabel, sizeof(horizLabel));
int16_t horizLabelW = getTextWidth(horizLabel);
int16_t horizLabelH = getFont().lineHeight();
int16_t horizLabelX = horizBarX + horizPx + 4;
int16_t horizLabelY = horizBarY - horizLabelH + 1;
fillRect(horizLabelX - 2, horizLabelY - 1, horizLabelW + 4, horizLabelH + 2, WHITE);
printAt(horizLabelX, horizBarY, horizLabel, LEFT, BOTTOM);
// Vertical scale bar
int16_t vertBarX = 1;
int16_t vertBarBottom = horizBarY;
int16_t vertBarTop = vertBarBottom - vertPx;
drawLine(vertBarX, vertBarBottom, vertBarX, vertBarTop, BLACK);
drawLine(vertBarX - 3, vertBarBottom, vertBarX + 3, vertBarBottom, BLACK);
drawLine(vertBarX - 3, vertBarTop, vertBarX + 3, vertBarTop, BLACK);
char vertTopLabel[32];
formatDistance(vertMeters, vertTopLabel, sizeof(vertTopLabel));
int16_t topLabelY = vertBarTop - getFont().lineHeight() - 2;
int16_t topLabelW = getTextWidth(vertTopLabel);
int16_t topLabelH = getFont().lineHeight();
fillRect(vertBarX - 2, topLabelY - 1, topLabelW + 6, topLabelH + 2, WHITE);
printAt(vertBarX + (topLabelW / 2) + 1, topLabelY + (topLabelH / 2), vertTopLabel, CENTER, MIDDLE);
char vertBottomLabel[32];
formatDistance(vertMeters, vertBottomLabel, sizeof(vertBottomLabel));
int16_t bottomLabelY = vertBarBottom + 4;
int16_t bottomLabelW = getTextWidth(vertBottomLabel);
int16_t bottomLabelH = getFont().lineHeight();
fillRect(vertBarX - 2, bottomLabelY - 1, bottomLabelW + 6, bottomLabelH + 2, WHITE);
printAt(vertBarX + (bottomLabelW / 2) + 1, bottomLabelY + (bottomLabelH / 2), vertBottomLabel, CENTER, MIDDLE);
// Draw our node LAST with full white fill + outline
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
if (ourNode && nodeDB->hasValidPosition(ourNode)) {
Marker self = calculateMarker(ourNode->position.latitude_i * 1e-7, ourNode->position.longitude_i * 1e-7, false, 0);
int16_t centerX = X(0.5) + (self.eastMeters * metersToPx);
int16_t centerY = Y(0.5) - (self.northMeters * metersToPx);
// White fill background + halo
fillCircle(centerX, centerY, 8, WHITE); // big white base
drawCircle(centerX, centerY, 8, WHITE); // crisp edge
// Black bullseye on top
drawCircle(centerX, centerY, 6, BLACK);
fillCircle(centerX, centerY, 2, BLACK);
// Crosshairs
drawLine(centerX - 8, centerY, centerX + 8, centerY, BLACK);
drawLine(centerX, centerY - 8, centerX, centerY + 8, BLACK);
}
}
@ -63,6 +165,12 @@ void InkHUD::MapApplet::onRender()
void InkHUD::MapApplet::getMapCenter(float *lat, float *lng)
{
// If we have a valid position for our own node, use that as the anchor
meshtastic_NodeInfoLite *ourNode = nodeDB->getMeshNode(nodeDB->getNodeNum());
if (ourNode && nodeDB->hasValidPosition(ourNode)) {
*lat = ourNode->position.latitude_i * 1e-7;
*lng = ourNode->position.longitude_i * 1e-7;
} else {
// Find mean lat long coords
// ============================
// - assigning X, Y and Z values to position on Earth's surface in 3D space, relative to center of planet
@ -70,7 +178,8 @@ void InkHUD::MapApplet::getMapCenter(float *lat, float *lng)
// - uses tan to find angles for lat / long degrees
// - longitude: triangle formed by x and y (on plane of the equator)
// - latitude: triangle formed by z (north south),
// and the line along plane of equator which stretches from earth's axis to where point xyz intersects planet's surface
// and the line along plane of equator which stretches from earth's axis to where point xyz intersects planet's
// surface
// Working totals, averaged after nodeDB processed
uint32_t positionCount = 0;
@ -155,18 +264,24 @@ void InkHUD::MapApplet::getMapCenter(float *lat, float *lng)
float hypotenuse = sqrt((xAvg * xAvg) + (yAvg * yAvg)); // Distance from globe's north-south axis to surface intersect
*lat = atan2(zAvg, hypotenuse) * RAD_TO_DEG;
}
// Use either our node position, or the mean fallback as the center
latCenter = *lat;
lngCenter = *lng;
// ----------------------------------------------
// This has given us the "mean position"
// This will be a position *somewhere* near the center of our nodes.
// What we actually want is to place our center so that our outermost nodes end up on the border of our map.
// The only real use of our "mean position" is to give us a reference frame:
// which direction is east, and which is west.
// This has given us either:
// - our actual position (preferred), or
// - a mean position (fallback if we had no fix)
//
// What we actually want is to place our center so that our outermost nodes
// end up on the border of our map. The only real use of our "center" is to give
// us a reference frame: which direction is east, and which is west.
//------------------------------------------------
// Find furthest nodes from "mean lat long"
// Find furthest nodes from our center
// ========================================
float northernmost = latCenter;
float southernmost = latCenter;
float easternmost = lngCenter;
@ -184,14 +299,14 @@ void InkHUD::MapApplet::getMapCenter(float *lat, float *lng)
continue;
// Check for a new top or bottom latitude
float lat = node->position.latitude_i * 1e-7;
northernmost = max(northernmost, lat);
southernmost = min(southernmost, lat);
float latNode = node->position.latitude_i * 1e-7;
northernmost = max(northernmost, latNode);
southernmost = min(southernmost, latNode);
// Longitude is trickier
float lng = node->position.longitude_i * 1e-7;
float degEastward = fmod(((lng - lngCenter) + 360), 360); // Degrees traveled east from lngCenter to reach node
float degWestward = abs(fmod(((lng - lngCenter) - 360), 360)); // Degrees traveled west from lngCenter to reach node
float lngNode = node->position.longitude_i * 1e-7;
float degEastward = fmod(((lngNode - lngCenter) + 360), 360); // Degrees traveled east from lngCenter to reach node
float degWestward = abs(fmod(((lngNode - lngCenter) - 360), 360)); // Degrees traveled west from lngCenter to reach node
if (degEastward < degWestward)
easternmost = max(easternmost, lngCenter + degEastward);
else
@ -250,7 +365,6 @@ InkHUD::MapApplet::Marker InkHUD::MapApplet::calculateMarker(float lat, float ln
m.hopsAway = hopsAway;
return m;
}
// Draw a marker on the map for a node, with a shortname label, and backing box
void InkHUD::MapApplet::drawLabeledMarker(meshtastic_NodeInfoLite *node)
{
@ -324,6 +438,18 @@ void InkHUD::MapApplet::drawLabeledMarker(meshtastic_NodeInfoLite *node)
textX = labelX + paddingW;
}
// Prevent overlap with scale bars and their labels
// Define a "safe zone" in the bottom-left where the scale bars and text are drawn
constexpr int16_t safeZoneHeight = 28; // adjust based on your label font height
constexpr int16_t safeZoneWidth = 60; // adjust based on horizontal label width zone
bool overlapsScale = (labelY + labelH > height() - safeZoneHeight) && (labelX < safeZoneWidth);
// If it overlaps, shift label upward slightly above the safe zone
if (overlapsScale) {
labelY = height() - safeZoneHeight - labelH - 2;
textY = labelY + (labelH / 2);
}
// Backing box
fillRect(labelX, labelY, labelW, labelH, WHITE);
drawRect(labelX, labelY, labelW, labelH, BLACK);

View File

@ -436,6 +436,12 @@ void setup()
LOG_INFO("\n\n//\\ E S H T /\\ S T / C\n");
#if defined(DEBUG_MUTE) && defined(DEBUG_PORT)
DEBUG_PORT.printf("\r\n\r\n//\\ E S H T /\\ S T / C\r\n");
DEBUG_PORT.printf("Version %s for %s from %s\r\n", optstr(APP_VERSION), optstr(APP_ENV), optstr(APP_REPO));
DEBUG_PORT.printf("Debug mute is enabled, there will be no serial output.\r\n");
#endif
initDeepSleep();
#if defined(MODEM_POWER_EN)

View File

@ -57,6 +57,9 @@ void PhoneAPI::handleStartConfig()
#endif
}
// Allow subclasses to prepare for high-throughput config traffic
onConfigStart();
// even if we were already connected - restart our state machine
if (config_nonce == SPECIAL_NONCE_ONLY_NODES) {
// If client only wants node info, jump directly to sending nodes
@ -71,7 +74,7 @@ void PhoneAPI::handleStartConfig()
spiLock->unlock();
LOG_DEBUG("Got %d files in manifest", filesManifest.size());
LOG_INFO("Start API client config");
LOG_INFO("Start API client config millis=%u", millis());
// Protect against concurrent BLE callbacks: they run in NimBLE's FreeRTOS task and also touch nodeInfoQueue.
{
concurrency::LockGuard guard(&nodeInfoMutex);
@ -453,7 +456,10 @@ size_t PhoneAPI::getFromRadio(uint8_t *buf)
break;
case STATE_SEND_OTHER_NODEINFOS: {
LOG_DEBUG("Send known nodes");
if (readIndex == 2) { // readIndex==2 will be true for the first non-us node
LOG_INFO("Start sending nodeinfos millis=%u", millis());
}
meshtastic_NodeInfo infoToSend = {};
{
concurrency::LockGuard guard(&nodeInfoMutex);
@ -470,13 +476,22 @@ size_t PhoneAPI::getFromRadio(uint8_t *buf)
if (infoToSend.num != 0) {
// Just in case we stored a different user.id in the past, but should never happen going forward
sprintf(infoToSend.user.id, "!%08x", infoToSend.num);
LOG_DEBUG("nodeinfo: num=0x%x, lastseen=%u, id=%s, name=%s", infoToSend.num, infoToSend.last_heard,
infoToSend.user.id, infoToSend.user.long_name);
// Logging this really slows down sending nodes on initial connection because the serial console is so slow, so only
// uncomment if you really need to:
// LOG_INFO("nodeinfo: num=0x%x, lastseen=%u, id=%s, name=%s", nodeInfoForPhone.num, nodeInfoForPhone.last_heard,
// nodeInfoForPhone.user.id, nodeInfoForPhone.user.long_name);
// Occasional progress logging. (readIndex==2 will be true for the first non-us node)
if (readIndex == 2 || readIndex % 20 == 0) {
LOG_DEBUG("nodeinfo: %d/%d", readIndex, nodeDB->getNumMeshNodes());
}
fromRadioScratch.which_payload_variant = meshtastic_FromRadio_node_info_tag;
fromRadioScratch.node_info = infoToSend;
prefetchNodeInfos();
} else {
LOG_DEBUG("Done sending nodeinfo");
LOG_DEBUG("Done sending %d of %d nodeinfos millis=%u", readIndex, nodeDB->getNumMeshNodes(), millis());
concurrency::LockGuard guard(&nodeInfoMutex);
nodeInfoQueue.clear();
state = STATE_SEND_FILEMANIFEST;
@ -558,11 +573,15 @@ size_t PhoneAPI::getFromRadio(uint8_t *buf)
void PhoneAPI::sendConfigComplete()
{
LOG_INFO("Config Send Complete");
LOG_INFO("Config Send Complete millis=%u", millis());
fromRadioScratch.which_payload_variant = meshtastic_FromRadio_config_complete_id_tag;
fromRadioScratch.config_complete_id = config_nonce;
config_nonce = 0;
state = STATE_SEND_PACKETS;
// Allow subclasses to know we've entered steady-state so they can lower power consumption
onConfigComplete();
pauseBluetoothLogging = false;
}

View File

@ -136,6 +136,7 @@ class PhoneAPI
bool available();
bool isConnected() { return state != STATE_SEND_NOTHING; }
bool isSendingPackets() { return state == STATE_SEND_PACKETS; }
protected:
/// Our fromradio packet while it is being assembled
@ -158,6 +159,11 @@ class PhoneAPI
*/
virtual void onNowHasData(uint32_t fromRadioNum) {}
/// Subclasses can use these lifecycle hooks for transport-specific behavior around config/steady-state
/// (i.e. BLE connection params)
virtual void onConfigStart() {}
virtual void onConfigComplete() {}
/// begin a new connection
void handleStartConfig();

View File

@ -35,6 +35,15 @@
(MAX_RX_TOPHONE + MAX_RX_FROMRADIO + 2 * MAX_TX_QUEUE + \
2) // max number of packets which can be in flight (either queued from reception or queued for sending)
static MemoryDynamic<meshtastic_MeshPacket> dynamicPool;
Allocator<meshtastic_MeshPacket> &packetPool = dynamicPool;
#elif defined(ARCH_STM32WL)
// On STM32 there isn't enough heap left over for the rest of the firmware if we allocate this statically.
// For now, make it dynamic again.
#define MAX_PACKETS \
(MAX_RX_TOPHONE + MAX_RX_FROMRADIO + 2 * MAX_TX_QUEUE + \
2) // max number of packets which can be in flight (either queued from reception or queued for sending)
static MemoryDynamic<meshtastic_MeshPacket> dynamicPool;
Allocator<meshtastic_MeshPacket> &packetPool = dynamicPool;
#else

View File

@ -282,6 +282,8 @@ typedef enum _meshtastic_HardwareModel {
meshtastic_HardwareModel_HELTEC_WIRELESS_TRACKER_V2 = 113,
/* LilyGo T-Watch Ultra */
meshtastic_HardwareModel_T_WATCH_ULTRA = 114,
/* Elecrow ThinkNode M3 */
meshtastic_HardwareModel_THINKNODE_M3 = 115,
/* ------------------------------------------------------------------------------------------------------------------------------------------
Reserved ID For developing private Ports. These will show up in live traffic sparsely, so we can use a high number. Keep it within 8 bits.
------------------------------------------------------------------------------------------------------------------------------------------ */

View File

@ -3,12 +3,15 @@
#include "BluetoothCommon.h"
#include "NimbleBluetooth.h"
#include "PowerFSM.h"
#include "StaticPointerQueue.h"
#include "concurrency/OSThread.h"
#include "main.h"
#include "mesh/PhoneAPI.h"
#include "mesh/mesh-pb-constants.h"
#include "sleep.h"
#include <NimBLEDevice.h>
#include <atomic>
#include <mutex>
#ifdef NIMBLE_TWO
@ -32,45 +35,276 @@ constexpr uint16_t kPreferredBleTxTimeUs = (kPreferredBleTxOctets + 14) * 8;
} // namespace
#endif
// Debugging options: careful, they slow things down quite a bit!
// #define DEBUG_NIMBLE_ON_READ_TIMING // uncomment to time onRead duration
// #define DEBUG_NIMBLE_ON_WRITE_TIMING // uncomment to time onWrite duration
// #define DEBUG_NIMBLE_NOTIFY // uncomment to enable notify logging
#define NIMBLE_BLUETOOTH_TO_PHONE_QUEUE_SIZE 3
#define NIMBLE_BLUETOOTH_FROM_PHONE_QUEUE_SIZE 3
NimBLECharacteristic *fromNumCharacteristic;
NimBLECharacteristic *BatteryCharacteristic;
NimBLECharacteristic *logRadioCharacteristic;
NimBLEServer *bleServer;
static bool passkeyShowing;
static std::atomic<uint16_t> nimbleBluetoothConnHandle{BLE_HS_CONN_HANDLE_NONE}; // BLE_HS_CONN_HANDLE_NONE means "no connection"
class BluetoothPhoneAPI : public PhoneAPI, public concurrency::OSThread
{
/*
CAUTION: There's a lot going on here and lots of room to break things.
This NimbleBluetooth.cpp file does some tricky synchronization between the NimBLE FreeRTOS task (which runs the onRead and
onWrite callbacks) and the main task (which runs runOnce and the rest of PhoneAPI).
The main idea is to add a little bit of synchronization here to make it so that the rest of the codebase doesn't have to
know about concurrency and mutexes, and can just run happily ever after as a cooperative multitasking OSThread system, where
locking isn't something that anyone has to worry about too much! :)
We achieve this by having some queues and mutexes in this file only, and ensuring that all calls to getFromRadio and
handleToRadio are only made from the main FreeRTOS task. This way, the rest of the codebase doesn't have to worry about
being run concurrently, which would make everything else much much much more complicated.
PHONE -> RADIO:
- [NimBLE FreeRTOS task:] onWrite callback holds fromPhoneMutex and pushes received packets into fromPhoneQueue.
- [Main task:] runOnceHandleFromPhoneQueue in main task holds fromPhoneMutex, pulls packets from fromPhoneQueue, and calls
handleToRadio **in main task**.
RADIO -> PHONE:
- [NimBLE FreeRTOS task:] onRead callback sets onReadCallbackIsWaitingForData flag and polls in a busy loop. (unless
there's already a packet waiting in toPhoneQueue)
- [Main task:] runOnceHandleToPhoneQueue sees onReadCallbackIsWaitingForData flag, calls getFromRadio **in main task** to
get packets from radio, holds toPhoneMutex, pushes the packet into toPhoneQueue, and clears the
onReadCallbackIsWaitingForData flag.
- [NimBLE FreeRTOS task:] onRead callback sees that the onReadCallbackIsWaitingForData flag cleared, holds toPhoneMutex,
pops the packet from toPhoneQueue, and returns it to NimBLE.
MUTEXES:
- fromPhoneMutex protects fromPhoneQueue and fromPhoneQueueSize
- toPhoneMutex protects toPhoneQueue, toPhoneQueueByteSizes, and toPhoneQueueSize
ATOMICS:
- fromPhoneQueueSize is only increased by onWrite, and only decreased by runOnceHandleFromPhoneQueue (or onDisconnect).
- toPhoneQueueSize is only increased by runOnceHandleToPhoneQueue, and only decreased by onRead (or onDisconnect).
- onReadCallbackIsWaitingForData is a flag. It's only set by onRead, and only cleared by runOnceHandleToPhoneQueue (or
onDisconnect).
PRELOADING: see comments in runOnceToPhoneCanPreloadNextPacket about when it's safe to preload packets from getFromRadio.
BLE CONNECTION PARAMS:
- During config, we request a high-throughput, low-latency BLE connection for speed.
- After config, we switch to a lower-power BLE connection for steady-state use to extend battery life.
MEMORY MANAGEMENT:
- We keep packets on the stack and do not allocate heap.
- We use std::array for fromPhoneQueue and toPhoneQueue to avoid mallocs and frees across FreeRTOS tasks.
- Yes, we have to do some copy operations on pop because of this, but it's worth it to avoid cross-task memory management.
NOTIFY IS BROKEN:
- Adding NIMBLE_PROPERTY::NOTIFY to FromRadioCharacteristic appears to break things. It is NOT backwards compatible.
ZERO-SIZE READS:
- Returning a zero-size read from onRead breaks some clients during the config phase. So we have to block onRead until we
have data.
- During the STATE_SEND_PACKETS phase, it's totally OK to return zero-size reads, as clients are expected to do reads
until they get a 0-byte response.
CROSS-TASK WAKEUP:
- If you call: bluetoothPhoneAPI->setIntervalFromNow(0); to schedule immediate processing of new data,
- Then you should also call: concurrency::mainDelay.interrupt(); to wake up the main loop if it's sleeping.
- Otherwise, you're going to wait ~100ms or so until the main loop wakes up from some other cause.
*/
public:
BluetoothPhoneAPI() : concurrency::OSThread("NimbleBluetooth") { nimble_queue.resize(3); }
std::vector<NimBLEAttValue> nimble_queue;
std::mutex nimble_mutex;
uint8_t queue_size = 0;
uint8_t fromRadioBytes[meshtastic_FromRadio_size] = {0};
size_t numBytes = 0;
bool hasChecked = false;
bool phoneWants = false;
BluetoothPhoneAPI() : concurrency::OSThread("NimbleBluetooth") {}
/* Packets from phone (BLE onWrite callback) */
std::mutex fromPhoneMutex;
std::atomic<size_t> fromPhoneQueueSize{0};
// We use array here (and pay the cost of memcpy) to avoid dynamic memory allocations and frees across FreeRTOS tasks.
std::array<NimBLEAttValue, NIMBLE_BLUETOOTH_FROM_PHONE_QUEUE_SIZE> fromPhoneQueue{};
/* Packets to phone (BLE onRead callback) */
std::mutex toPhoneMutex;
std::atomic<size_t> toPhoneQueueSize{0};
// We use array here (and pay the cost of memcpy) to avoid dynamic memory allocations and frees across FreeRTOS tasks.
std::array<std::array<uint8_t, meshtastic_FromRadio_size>, NIMBLE_BLUETOOTH_TO_PHONE_QUEUE_SIZE> toPhoneQueue{};
std::array<size_t, NIMBLE_BLUETOOTH_TO_PHONE_QUEUE_SIZE> toPhoneQueueByteSizes{};
// The onReadCallbackIsWaitingForData flag provides synchronization between the NimBLE task's onRead callback and our main
// task's runOnce. It's only set by onRead, and only cleared by runOnce.
std::atomic<bool> onReadCallbackIsWaitingForData{false};
/* Statistics/logging helpers */
std::atomic<int32_t> readCount{0};
std::atomic<int32_t> notifyCount{0};
std::atomic<int32_t> writeCount{0};
protected:
virtual int32_t runOnce() override
{
std::lock_guard<std::mutex> guard(nimble_mutex);
if (queue_size > 0) {
for (uint8_t i = 0; i < queue_size; i++) {
handleToRadio(nimble_queue.at(i).data(), nimble_queue.at(i).length());
}
LOG_DEBUG("Queue_size %u", queue_size);
queue_size = 0;
}
if (!hasChecked && phoneWants) {
// Pull fresh data while we're outside of the NimBLE callback context.
numBytes = getFromRadio(fromRadioBytes);
hasChecked = true;
while (runOnceHasWorkToDo()) {
/*
PROCESS fromPhoneQueue BEFORE toPhoneQueue:
In normal STATE_SEND_PACKETS operation, it's unlikely that we'll have both writes and reads to process at the same
time, because either onWrite or onRead will trigger this runOnce. And in STATE_SEND_PACKETS, it's generally ok to
service either the reads or writes first.
However, during the initial setup wantConfig packet, the clients send a write and immediately send a read, and they
expect the read will respond to the write. (This also happens when a client goes from STATE_SEND_PACKETS back to
another wantConfig, like the iOS client does when requesting the nodedb after requesting the main config only.)
So it's safest to always service writes (fromPhoneQueue) before reads (toPhoneQueue), so that any "synchronous"
write-then-read sequences from the client work as expected, even if this means we block onRead for a while: this is
what the client wants!
*/
// PHONE -> RADIO:
runOnceHandleFromPhoneQueue(); // pull data from onWrite to handleToRadio
// RADIO -> PHONE:
runOnceHandleToPhoneQueue(); // push data from getFromRadio to onRead
}
// the run is triggered via NimbleBluetoothToRadioCallback and NimbleBluetoothFromRadioCallback
return INT32_MAX;
}
virtual void onConfigStart() override
{
LOG_INFO("BLE onConfigStart");
// Prefer high throughput during config/setup, at the cost of high power consumption (for a few seconds)
if (bleServer && isConnected()) {
uint16_t conn_handle = nimbleBluetoothConnHandle.load();
if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {
requestHighThroughputConnection(conn_handle);
}
}
}
virtual void onConfigComplete() override
{
LOG_INFO("BLE onConfigComplete");
// Switch to lower power consumption BLE connection params for steady-state use after config/setup is complete
if (bleServer && isConnected()) {
uint16_t conn_handle = nimbleBluetoothConnHandle.load();
if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {
requestLowerPowerConnection(conn_handle);
}
}
}
bool runOnceHasWorkToDo() { return runOnceHasWorkToPhone() || runOnceHasWorkFromPhone(); }
bool runOnceHasWorkToPhone() { return onReadCallbackIsWaitingForData || runOnceToPhoneCanPreloadNextPacket(); }
bool runOnceToPhoneCanPreloadNextPacket()
{
/*
* PRELOADING getFromRadio RESPONSES:
*
* It's not safe to preload packets if we're in STATE_SEND_PACKETS, because there may be a while between the time we call
* getFromRadio and when the client actually reads it. If the connection drops in that time, we might lose that packet
* forever. In STATE_SEND_PACKETS, if we wait for onRead before we call getFromRadio, we minimize the time window where
* the client might disconnect before completing the read.
*
* However, if we're in the setup states (sending config, nodeinfo, etc), it's safe and beneficial to preload packets into
* toPhoneQueue because the client will just reconnect after a disconnect, losing nothing.
*/
if (!isConnected()) {
return false;
} else if (isSendingPackets()) {
// If we're in STATE_SEND_PACKETS, we must wait for onRead before calling getFromRadio.
return false;
} else {
// In other states, we can preload as long as there's space in the toPhoneQueue.
return toPhoneQueueSize < NIMBLE_BLUETOOTH_TO_PHONE_QUEUE_SIZE;
}
}
void runOnceHandleToPhoneQueue()
{
// Stack buffer for getFromRadio packet
uint8_t fromRadioBytes[meshtastic_FromRadio_size] = {0};
size_t numBytes = 0;
if (onReadCallbackIsWaitingForData || runOnceToPhoneCanPreloadNextPacket()) {
numBytes = getFromRadio(fromRadioBytes);
if (numBytes == 0) {
/*
Client expected a read, but we have nothing to send.
In STATE_SEND_PACKETS, it is 100% OK to return a 0-byte response, as we expect clients to do read beyond
notifies regularly, to make sure they have nothing else to read.
In other states, this is fine **so long as we've already processed pending onWrites first**, because the client
may requesting wantConfig and immediately doing a read.
*/
} else {
// Push to toPhoneQueue, protected by toPhoneMutex. Hold the mutex as briefly as possible.
if (toPhoneQueueSize < NIMBLE_BLUETOOTH_TO_PHONE_QUEUE_SIZE) {
// Note: the comparison above is safe without a mutex because we are the only method that *increases*
// toPhoneQueueSize. (It's okay if toPhoneQueueSize *decreases* in the NimBLE task meanwhile.)
{ // scope for toPhoneMutex mutex
std::lock_guard<std::mutex> guard(toPhoneMutex);
size_t storeAtIndex = toPhoneQueueSize.load();
memcpy(toPhoneQueue[storeAtIndex].data(), fromRadioBytes, numBytes);
toPhoneQueueByteSizes[storeAtIndex] = numBytes;
toPhoneQueueSize++;
}
#ifdef DEBUG_NIMBLE_ON_READ_TIMING
LOG_DEBUG("BLE getFromRadio returned numBytes=%u, pushed toPhoneQueueSize=%u", numBytes,
toPhoneQueueSize.load());
#endif
} else {
// Shouldn't happen because the onRead callback shouldn't be waiting if the queue is full!
LOG_ERROR("Shouldn't happen! Drop FromRadio packet, toPhoneQueue full (%u bytes)", numBytes);
}
}
// Clear the onReadCallbackIsWaitingForData flag so onRead knows it can proceed.
onReadCallbackIsWaitingForData = false; // only clear this flag AFTER the push
}
}
bool runOnceHasWorkFromPhone() { return fromPhoneQueueSize > 0; }
void runOnceHandleFromPhoneQueue()
{
// Handle packets we received from onWrite from the phone.
if (fromPhoneQueueSize > 0) {
// Note: the comparison above is safe without a mutex because we are the only method that *decreases*
// fromPhoneQueueSize. (It's okay if fromPhoneQueueSize *increases* in the NimBLE task meanwhile.)
LOG_DEBUG("NimbleBluetooth: handling ToRadio packet, fromPhoneQueueSize=%u", fromPhoneQueueSize.load());
// Pop the front of fromPhoneQueue, holding the mutex only briefly while we pop.
NimBLEAttValue val;
{ // scope for fromPhoneMutex mutex
std::lock_guard<std::mutex> guard(fromPhoneMutex);
val = fromPhoneQueue[0];
// Shift the rest of the queue down
for (uint8_t i = 1; i < fromPhoneQueueSize; i++) {
fromPhoneQueue[i - 1] = fromPhoneQueue[i];
}
// Safe decrement due to onDisconnect
if (fromPhoneQueueSize > 0)
fromPhoneQueueSize--;
}
handleToRadio(val.data(), val.length());
}
}
/**
* Subclasses can use this as a hook to provide custom notifications for their transport (i.e. bluetooth notifies)
*/
@ -78,14 +312,22 @@ class BluetoothPhoneAPI : public PhoneAPI, public concurrency::OSThread
{
PhoneAPI::onNowHasData(fromRadioNum);
int currentNotifyCount = notifyCount.fetch_add(1);
uint8_t cc = bleServer->getConnectedCount();
LOG_DEBUG("BLE notify fromNum: %d connections: %d", fromRadioNum, cc);
#ifdef DEBUG_NIMBLE_NOTIFY
// This logging slows things down when there are lots of packets going to the phone, like initial connection:
LOG_DEBUG("BLE notify(%d) fromNum: %d connections: %d", currentNotifyCount, fromRadioNum, cc);
#endif
uint8_t val[4];
put_le32(val, fromRadioNum);
fromNumCharacteristic->setValue(val, sizeof(val));
#ifdef NIMBLE_TWO
// NOTE: I don't have any NIMBLE_TWO devices, but this line makes me suspicious, and I suspect it needs to just be
// notify().
fromNumCharacteristic->notify(val, sizeof(val), BLE_HS_CONN_HANDLE_NONE);
#else
fromNumCharacteristic->notify();
@ -94,6 +336,54 @@ class BluetoothPhoneAPI : public PhoneAPI, public concurrency::OSThread
/// Check the current underlying physical link to see if the client is currently connected
virtual bool checkIsConnected() { return bleServer && bleServer->getConnectedCount() > 0; }
void requestHighThroughputConnection(uint16_t conn_handle)
{
/* Request a lower-latency, higher-throughput BLE connection.
This comes at the cost of higher power consumption, so we may want to only use this for initial setup, and then switch to
a slower mode.
See https://developer.apple.com/library/archive/qa/qa1931/_index.html for formulas to calculate values, iOS/macOS
constraints, and recommendations. (Android doesn't have specific constraints, but seems to be compatible with the Apple
recommendations.)
Selected settings:
minInterval (units of 1.25ms): 7.5ms = 6 (lower than the Apple recommended minimum, but allows faster when the client
supports it.)
maxInterval (units of 1.25ms): 15ms = 12
latency: 0 (don't allow peripheral to skip any connection events)
timeout (units of 10ms): 6 seconds = 600 (supervision timeout)
These are intentionally aggressive to prioritize speed over power consumption, but are only used for a few seconds at
setup. Not worth adjusting much.
*/
LOG_INFO("BLE requestHighThroughputConnection");
bleServer->updateConnParams(conn_handle, 6, 12, 0, 600);
}
void requestLowerPowerConnection(uint16_t conn_handle)
{
/* Request a lower power consumption (but higher latency, lower throughput) BLE connection.
This is suitable for steady-state operation after initial setup is complete.
See https://developer.apple.com/library/archive/qa/qa1931/_index.html for formulas to calculate values, iOS/macOS
constraints, and recommendations. (Android doesn't have specific constraints, but seems to be compatible with the Apple
recommendations.)
Selected settings:
minInterval (units of 1.25ms): 30ms = 24
maxInterval (units of 1.25ms): 50ms = 40
latency: 2 (allow peripheral to skip up to 2 consecutive connection events to save power)
timeout (units of 10ms): 6 seconds = 600 (supervision timeout)
There's an opportunity for tuning here if anyone wants to do some power measurements, but these should allow 10-20 packets
per second.
*/
LOG_INFO("BLE requestLowerPowerConnection");
bleServer->updateConnParams(conn_handle, 24, 40, 2, 600);
}
};
static BluetoothPhoneAPI *bluetoothPhoneAPI;
@ -113,18 +403,45 @@ class NimbleBluetoothToRadioCallback : public NimBLECharacteristicCallbacks
#endif
{
// CAUTION: This callback runs in the NimBLE task!!! Don't do anything except communicate with the main task's runOnce.
// Assumption: onWrite is serialized by NimBLE, so we don't need to lock here against multiple concurrent onWrite calls.
int currentWriteCount = bluetoothPhoneAPI->writeCount.fetch_add(1);
#ifdef DEBUG_NIMBLE_ON_WRITE_TIMING
int startMillis = millis();
LOG_DEBUG("BLE onWrite(%d): start millis=%d", currentWriteCount, startMillis);
#endif
auto val = pCharacteristic->getValue();
if (memcmp(lastToRadio, val.data(), val.length()) != 0) {
if (bluetoothPhoneAPI->queue_size < 3) {
if (bluetoothPhoneAPI->fromPhoneQueueSize < NIMBLE_BLUETOOTH_FROM_PHONE_QUEUE_SIZE) {
// Note: the comparison above is safe without a mutex because we are the only method that *increases*
// fromPhoneQueueSize. (It's okay if fromPhoneQueueSize *decreases* in the main task meanwhile.)
memcpy(lastToRadio, val.data(), val.length());
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->nimble_mutex);
bluetoothPhoneAPI->nimble_queue.at(bluetoothPhoneAPI->queue_size) = val;
bluetoothPhoneAPI->queue_size++;
{ // scope for fromPhoneMutex mutex
// Append to fromPhoneQueue, protected by fromPhoneMutex. Hold the mutex as briefly as possible.
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->fromPhoneMutex);
bluetoothPhoneAPI->fromPhoneQueue.at(bluetoothPhoneAPI->fromPhoneQueueSize) = val;
bluetoothPhoneAPI->fromPhoneQueueSize++;
}
// After releasing the mutex, schedule immediate processing of the new packet.
bluetoothPhoneAPI->setIntervalFromNow(0);
concurrency::mainDelay.interrupt(); // wake up main loop if sleeping
#ifdef DEBUG_NIMBLE_ON_WRITE_TIMING
int finishMillis = millis();
LOG_DEBUG("BLE onWrite(%d): append to fromPhoneQueue took %u ms. numBytes=%d", currentWriteCount,
finishMillis - startMillis, val.length());
#endif
} else {
LOG_WARN("BLE onWrite(%d): Drop ToRadio packet, fromPhoneQueue full (%u bytes)", currentWriteCount, val.length());
}
} else {
LOG_DEBUG("Drop duplicate ToRadio packet (%u bytes)", val.length());
LOG_DEBUG("BLE onWrite(%d): Drop duplicate ToRadio packet (%u bytes)", currentWriteCount, val.length());
}
}
};
@ -137,32 +454,107 @@ class NimbleBluetoothFromRadioCallback : public NimBLECharacteristicCallbacks
virtual void onRead(NimBLECharacteristic *pCharacteristic)
#endif
{
bluetoothPhoneAPI->phoneWants = true;
bluetoothPhoneAPI->setIntervalFromNow(0);
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->nimble_mutex); // BLE callbacks run in NimBLE task
// CAUTION: This callback runs in the NimBLE task!!! Don't do anything except communicate with the main task's runOnce.
if (!bluetoothPhoneAPI->hasChecked) {
// Fetch payload on demand; prefetch keeps this fast for the first read.
bluetoothPhoneAPI->numBytes = bluetoothPhoneAPI->getFromRadio(bluetoothPhoneAPI->fromRadioBytes);
bluetoothPhoneAPI->hasChecked = true;
}
int currentReadCount = bluetoothPhoneAPI->readCount.fetch_add(1);
int tries = 0;
int startMillis = millis();
pCharacteristic->setValue(bluetoothPhoneAPI->fromRadioBytes, bluetoothPhoneAPI->numBytes);
if (bluetoothPhoneAPI->numBytes != 0) {
#ifdef NIMBLE_TWO
// Notify immediately so subscribed clients see the packet without an extra read.
pCharacteristic->notify(bluetoothPhoneAPI->fromRadioBytes, bluetoothPhoneAPI->numBytes, BLE_HS_CONN_HANDLE_NONE);
#else
pCharacteristic->notify();
#ifdef DEBUG_NIMBLE_ON_READ_TIMING
LOG_DEBUG("BLE onRead(%d): start millis=%d", currentReadCount, startMillis);
#endif
// Is there a packet ready to go, or do we have to ask the main task to get one for us?
if (bluetoothPhoneAPI->toPhoneQueueSize > 0) {
// Note: the comparison above is safe without a mutex because we are the only method that *decreases*
// toPhoneQueueSize. (It's okay if toPhoneQueueSize *increases* in the main task meanwhile.)
// There's already a packet queued. Great! We don't need to wait for onReadCallbackIsWaitingForData.
#ifdef DEBUG_NIMBLE_ON_READ_TIMING
LOG_DEBUG("BLE onRead(%d): packet already waiting, no need to set onReadCallbackIsWaitingForData", currentReadCount);
#endif
} else {
// Tell the main task that we'd like a packet.
bluetoothPhoneAPI->onReadCallbackIsWaitingForData = true;
// Wait for the main task to produce a packet for us, up to about 20 seconds.
// It normally takes just a few milliseconds, but at initial startup, etc, the main task can get blocked for longer
// doing various setup tasks.
while (bluetoothPhoneAPI->onReadCallbackIsWaitingForData && tries < 4000) {
// Schedule the main task runOnce to run ASAP.
bluetoothPhoneAPI->setIntervalFromNow(0);
concurrency::mainDelay.interrupt(); // wake up main loop if sleeping
if (!bluetoothPhoneAPI->onReadCallbackIsWaitingForData) {
// we may be able to break even before a delay, if the call to interrupt woke up the main loop and it ran
// already
#ifdef DEBUG_NIMBLE_ON_READ_TIMING
LOG_DEBUG("BLE onRead(%d): broke before delay after %u ms, %d tries", currentReadCount,
millis() - startMillis, tries);
#endif
break;
}
if (bluetoothPhoneAPI->numBytes != 0) // if we did send something, queue it up right away to reload
// This delay happens in the NimBLE FreeRTOS task, which really can't do anything until we get a value back.
// No harm in polling pretty frequently.
delay(tries < 20 ? 1 : 5);
tries++;
if (tries == 4000) {
LOG_WARN(
"BLE onRead(%d): timeout waiting for data after %u ms, %d tries, giving up and returning 0-size response",
currentReadCount, millis() - startMillis, tries);
}
}
}
// Pop from toPhoneQueue, protected by toPhoneMutex. Hold the mutex as briefly as possible.
uint8_t fromRadioBytes[meshtastic_FromRadio_size] = {0}; // Stack buffer for getFromRadio packet
size_t numBytes = 0;
{ // scope for toPhoneMutex mutex
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->toPhoneMutex);
size_t toPhoneQueueSize = bluetoothPhoneAPI->toPhoneQueueSize.load();
if (toPhoneQueueSize > 0) {
// Copy from the front of the toPhoneQueue
memcpy(fromRadioBytes, bluetoothPhoneAPI->toPhoneQueue[0].data(), bluetoothPhoneAPI->toPhoneQueueByteSizes[0]);
numBytes = bluetoothPhoneAPI->toPhoneQueueByteSizes[0];
// Shift the rest of the queue down
for (uint8_t i = 1; i < toPhoneQueueSize; i++) {
memcpy(bluetoothPhoneAPI->toPhoneQueue[i - 1].data(), bluetoothPhoneAPI->toPhoneQueue[i].data(),
bluetoothPhoneAPI->toPhoneQueueByteSizes[i]);
// The above line is similar to:
// bluetoothPhoneAPI->toPhoneQueue[i - 1] = bluetoothPhoneAPI->toPhoneQueue[i]
// but is usually faster because it doesn't have to copy all the trailing bytes beyond
// toPhoneQueueByteSizes[i].
//
// We deliberately use an array here (and pay the CPU cost of some memcpy) to avoid synchronizing dynamic
// memory allocations and frees across FreeRTOS tasks.
bluetoothPhoneAPI->toPhoneQueueByteSizes[i - 1] = bluetoothPhoneAPI->toPhoneQueueByteSizes[i];
}
// Safe decrement due to onDisconnect
if (bluetoothPhoneAPI->toPhoneQueueSize > 0)
bluetoothPhoneAPI->toPhoneQueueSize--;
} else {
// nothing in the toPhoneQueue; that's fine, and we'll just have numBytes=0.
}
}
#ifdef DEBUG_NIMBLE_ON_READ_TIMING
int finishMillis = millis();
LOG_DEBUG("BLE onRead(%d): onReadCallbackIsWaitingForData took %u ms, %d tries. numBytes=%d", currentReadCount,
finishMillis - startMillis, tries, numBytes);
#endif
pCharacteristic->setValue(fromRadioBytes, numBytes);
// If we sent something, wake up the main loop if it's sleeping in case there are more packets ready to enqueue.
if (numBytes != 0) {
bluetoothPhoneAPI->setIntervalFromNow(0);
bluetoothPhoneAPI->numBytes = 0;
bluetoothPhoneAPI->hasChecked = false;
bluetoothPhoneAPI->phoneWants = false;
concurrency::mainDelay.interrupt(); // wake up main loop if sleeping
}
}
};
@ -244,6 +636,13 @@ class NimbleBluetoothServerCallback : public NimBLEServerCallbacks
if (screen)
screen->endAlert();
}
// Store the connection handle for future use
#ifdef NIMBLE_TWO
nimbleBluetoothConnHandle = connInfo.getConnHandle();
#else
nimbleBluetoothConnHandle = desc->conn_handle;
#endif
}
#ifdef NIMBLE_TWO
@ -290,16 +689,29 @@ class NimbleBluetoothServerCallback : public NimBLEServerCallbacks
bluetoothStatus->updateStatus(&newStatus);
if (bluetoothPhoneAPI) {
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->nimble_mutex);
bluetoothPhoneAPI->close();
bluetoothPhoneAPI->numBytes = 0;
bluetoothPhoneAPI->queue_size = 0;
bluetoothPhoneAPI->hasChecked = false;
bluetoothPhoneAPI->phoneWants = false;
{ // scope for fromPhoneMutex mutex
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->fromPhoneMutex);
bluetoothPhoneAPI->fromPhoneQueueSize = 0;
}
bluetoothPhoneAPI->onReadCallbackIsWaitingForData = false;
{ // scope for toPhoneMutex mutex
std::lock_guard<std::mutex> guard(bluetoothPhoneAPI->toPhoneMutex);
bluetoothPhoneAPI->toPhoneQueueSize = 0;
}
bluetoothPhoneAPI->readCount = 0;
bluetoothPhoneAPI->notifyCount = 0;
bluetoothPhoneAPI->writeCount = 0;
}
// Clear the last ToRadio packet buffer to avoid rejecting first packet from new connection
memset(lastToRadio, 0, sizeof(lastToRadio));
nimbleBluetoothConnHandle = BLE_HS_CONN_HANDLE_NONE; // BLE_HS_CONN_HANDLE_NONE means "no connection"
#ifdef NIMBLE_TWO
// Restart Advertising
ble->startAdvertising();
@ -436,17 +848,15 @@ void NimbleBluetooth::setupService()
if (config.bluetooth.mode == meshtastic_Config_BluetoothConfig_PairingMode_NO_PIN) {
ToRadioCharacteristic = bleService->createCharacteristic(TORADIO_UUID, NIMBLE_PROPERTY::WRITE);
// Allow notifications so phones can stream FromRadio without polling.
FromRadioCharacteristic =
bleService->createCharacteristic(FROMRADIO_UUID, NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::NOTIFY);
FromRadioCharacteristic = bleService->createCharacteristic(FROMRADIO_UUID, NIMBLE_PROPERTY::READ);
fromNumCharacteristic = bleService->createCharacteristic(FROMNUM_UUID, NIMBLE_PROPERTY::NOTIFY | NIMBLE_PROPERTY::READ);
logRadioCharacteristic =
bleService->createCharacteristic(LOGRADIO_UUID, NIMBLE_PROPERTY::NOTIFY | NIMBLE_PROPERTY::READ, 512U);
} else {
ToRadioCharacteristic = bleService->createCharacteristic(
TORADIO_UUID, NIMBLE_PROPERTY::WRITE | NIMBLE_PROPERTY::WRITE_AUTHEN | NIMBLE_PROPERTY::WRITE_ENC);
FromRadioCharacteristic =
bleService->createCharacteristic(FROMRADIO_UUID, NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::READ_AUTHEN |
NIMBLE_PROPERTY::READ_ENC | NIMBLE_PROPERTY::NOTIFY);
FromRadioCharacteristic = bleService->createCharacteristic(
FROMRADIO_UUID, NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::READ_AUTHEN | NIMBLE_PROPERTY::READ_ENC);
fromNumCharacteristic =
bleService->createCharacteristic(FROMNUM_UUID, NIMBLE_PROPERTY::NOTIFY | NIMBLE_PROPERTY::READ |
NIMBLE_PROPERTY::READ_AUTHEN | NIMBLE_PROPERTY::READ_ENC);

View File

@ -5,3 +5,12 @@ board_check = true
build_flags =
${esp32_base.build_flags} -D TLORA_V2_1_16 -I variants/esp32/tlora_v2_1_16
upload_speed = 115200
[env:sugarcube]
extends = env:tlora-v2-1-1_6
board_level = extra
build_flags =
${env:tlora-v2-1-1_6.build_flags}
-DBUTTON_PIN=0
-DPIN_BUZZER=25
-DLED_PIN=-1

View File

@ -8,7 +8,11 @@
#define I2C_SDA 21 // I2C pins for this board
#define I2C_SCL 22
#if defined(LED_PIN) && LED_PIN == -1
#undef LED_PIN
#else
#define LED_PIN 25 // If defined we will blink this LED
#endif
#define USE_RF95
#define LORA_DIO0 26 // a No connect on the SX1262 module