Fixed missing brackets

This commit is contained in:
Jm Casler 2022-05-24 18:06:53 -07:00
parent f3c15eb6cc
commit c5f3cad0f9

View File

@ -93,24 +93,25 @@ bool RadioLibInterface::canSendImmediately()
/// bluetooth comms code. If the txmit queue is empty it might return an error
ErrorCode RadioLibInterface::send(MeshPacket *p)
{
#ifndef DISABLE_WELCOME_UNSET
if (config.lora.region != Config_LoRaConfig_RegionCode_Unset) {
if (disabled || config.lora.tx_disabled) {
if (config.lora.region != Config_LoRaConfig_RegionCode_Unset) {
if (disabled || config.lora.tx_disabled) {
DEBUG_MSG("send - lora_tx_disabled\n");
packetPool.release(p);
return ERRNO_DISABLED;
}
if (radioConfig.preferences.region != RegionCode_Unset) {
if (disabled || config.lora.tx_disabled) {
DEBUG_MSG("send - lora_tx_disabled\n");
packetPool.release(p);
return ERRNO_DISABLED;
} else {
DEBUG_MSG("send - lora_tx_disabled because RegionCode_Unset\n");
packetPool.release(p);
return ERRNO_DISABLED;
}
}
} else {
DEBUG_MSG("send - lora_tx_disabled because RegionCode_Unset\n");
packetPool.release(p);
return ERRNO_DISABLED;
}
#else
@ -123,265 +124,266 @@ ErrorCode RadioLibInterface::send(MeshPacket *p)
#endif
// Sometimes when testing it is useful to be able to never turn on the xmitter
// Sometimes when testing it is useful to be able to never turn on the xmitter
#ifndef LORA_DISABLE_SENDING
printPacket("enqueuing for send", p);
printPacket("enqueuing for send", p);
DEBUG_MSG("txGood=%d,rxGood=%d,rxBad=%d\n", txGood, rxGood, rxBad);
ErrorCode res = txQueue.enqueue(p) ? ERRNO_OK : ERRNO_UNKNOWN;
DEBUG_MSG("txGood=%d,rxGood=%d,rxBad=%d\n", txGood, rxGood, rxBad);
ErrorCode res = txQueue.enqueue(p) ? ERRNO_OK : ERRNO_UNKNOWN;
if (res != ERRNO_OK) { // we weren't able to queue it, so we must drop it to prevent leaks
packetPool.release(p);
return res;
}
// set (random) transmit delay to let others reconfigure their radio,
// to avoid collisions and implement timing-based flooding
// DEBUG_MSG("Set random delay before transmitting.\n");
setTransmitDelay();
if (res != ERRNO_OK) { // we weren't able to queue it, so we must drop it to prevent leaks
packetPool.release(p);
return res;
}
// set (random) transmit delay to let others reconfigure their radio,
// to avoid collisions and implement timing-based flooding
// DEBUG_MSG("Set random delay before transmitting.\n");
setTransmitDelay();
return res;
#else
packetPool.release(p);
return ERRNO_DISABLED;
#endif
}
}
bool RadioLibInterface::canSleep()
{
bool res = txQueue.empty();
if (!res) // only print debug messages if we are vetoing sleep
DEBUG_MSG("radio wait to sleep, txEmpty=%d\n", res);
bool RadioLibInterface::canSleep()
{
bool res = txQueue.empty();
if (!res) // only print debug messages if we are vetoing sleep
DEBUG_MSG("radio wait to sleep, txEmpty=%d\n", res);
return res;
}
return res;
}
/** Attempt to cancel a previously sent packet. Returns true if a packet was found we could cancel */
bool RadioLibInterface::cancelSending(NodeNum from, PacketId id)
{
auto p = txQueue.remove(from, id);
if (p)
packetPool.release(p); // free the packet we just removed
/** Attempt to cancel a previously sent packet. Returns true if a packet was found we could cancel */
bool RadioLibInterface::cancelSending(NodeNum from, PacketId id)
{
auto p = txQueue.remove(from, id);
if (p)
packetPool.release(p); // free the packet we just removed
bool result = (p != NULL);
DEBUG_MSG("cancelSending id=0x%x, removed=%d\n", id, result);
return result;
}
bool result = (p != NULL);
DEBUG_MSG("cancelSending id=0x%x, removed=%d\n", id, result);
return result;
}
/** radio helper thread callback.
/** radio helper thread callback.
We never immediately transmit after any operation (either rx or tx). Instead we should start receiving and
wait a random delay of 100ms to 100ms+shortPacketMsec to make sure we are not stomping on someone else. The 100ms delay at the
beginning ensures all possible listeners have had time to finish processing the previous packet and now have their radio in RX
state. The up to 100ms+shortPacketMsec random delay gives a chance for all possible senders to have high odds of detecting that
someone else started transmitting first and then they will wait until that packet finishes.
We never immediately transmit after any operation (either rx or tx). Instead we should start receiving and
wait a random delay of 100ms to 100ms+shortPacketMsec to make sure we are not stomping on someone else. The 100ms delay
at the beginning ensures all possible listeners have had time to finish processing the previous packet and now have their
radio in RX state. The up to 100ms+shortPacketMsec random delay gives a chance for all possible senders to have high odds
of detecting that someone else started transmitting first and then they will wait until that packet finishes.
NOTE: the large flood rebroadcast delay might still be needed even with this approach. Because we might not be able to hear other
transmitters that we are potentially stomping on. Requires further thought.
NOTE: the large flood rebroadcast delay might still be needed even with this approach. Because we might not be able to
hear other transmitters that we are potentially stomping on. Requires further thought.
FIXME, the MIN_TX_WAIT_MSEC and MAX_TX_WAIT_MSEC values should be tuned via logic analyzer later.
*/
void RadioLibInterface::onNotify(uint32_t notification)
{
switch (notification) {
case ISR_TX:
handleTransmitInterrupt();
startReceive();
// DEBUG_MSG("tx complete - starting timer\n");
startTransmitTimer();
break;
case ISR_RX:
handleReceiveInterrupt();
startReceive();
// DEBUG_MSG("rx complete - starting timer\n");
startTransmitTimer();
break;
case TRANSMIT_DELAY_COMPLETED:
// DEBUG_MSG("delay done\n");
FIXME, the MIN_TX_WAIT_MSEC and MAX_TX_WAIT_MSEC values should be tuned via logic analyzer later.
*/
void RadioLibInterface::onNotify(uint32_t notification)
{
switch (notification) {
case ISR_TX:
handleTransmitInterrupt();
startReceive();
// DEBUG_MSG("tx complete - starting timer\n");
startTransmitTimer();
break;
case ISR_RX:
handleReceiveInterrupt();
startReceive();
// DEBUG_MSG("rx complete - starting timer\n");
startTransmitTimer();
break;
case TRANSMIT_DELAY_COMPLETED:
// DEBUG_MSG("delay done\n");
// If we are not currently in receive mode, then restart the random delay (this can happen if the main thread
// has placed the unit into standby) FIXME, how will this work if the chipset is in sleep mode?
if (!txQueue.empty()) {
if (!canSendImmediately()) {
// DEBUG_MSG("Currently Rx/Tx-ing: set random delay\n");
setTransmitDelay(); // currently Rx/Tx-ing: reset random delay
} else {
if (isChannelActive()) { // check if there is currently a LoRa packet on the channel
// DEBUG_MSG("Channel is active: set random delay\n");
setTransmitDelay(); // reset random delay
// If we are not currently in receive mode, then restart the random delay (this can happen if the main thread
// has placed the unit into standby) FIXME, how will this work if the chipset is in sleep mode?
if (!txQueue.empty()) {
if (!canSendImmediately()) {
// DEBUG_MSG("Currently Rx/Tx-ing: set random delay\n");
setTransmitDelay(); // currently Rx/Tx-ing: reset random delay
} else {
// Send any outgoing packets we have ready
MeshPacket *txp = txQueue.dequeue();
assert(txp);
startSend(txp);
if (isChannelActive()) { // check if there is currently a LoRa packet on the channel
// DEBUG_MSG("Channel is active: set random delay\n");
setTransmitDelay(); // reset random delay
} else {
// Send any outgoing packets we have ready
MeshPacket *txp = txQueue.dequeue();
assert(txp);
startSend(txp);
// Packet has been sent, count it toward our TX airtime utilization.
uint32_t xmitMsec = getPacketTime(txp);
airTime->logAirtime(TX_LOG, xmitMsec);
// Packet has been sent, count it toward our TX airtime utilization.
uint32_t xmitMsec = getPacketTime(txp);
airTime->logAirtime(TX_LOG, xmitMsec);
}
}
} else {
// DEBUG_MSG("done with txqueue\n");
}
} else {
// DEBUG_MSG("done with txqueue\n");
}
break;
default:
assert(0); // We expected to receive a valid notification from the ISR
}
}
void RadioLibInterface::setTransmitDelay()
{
MeshPacket *p = txQueue.getFront();
// We want all sending/receiving to be done by our daemon thread.
// We use a delay here because this packet might have been sent in response to a packet we just received.
// So we want to make sure the other side has had a chance to reconfigure its radio.
/* We assume if rx_snr = 0 and rx_rssi = 0, the packet was generated locally.
* This assumption is valid because of the offset generated by the radio to account for the noise
* floor.
*/
if (p->rx_snr == 0 && p->rx_rssi == 0) {
startTransmitTimer(true);
} else {
// If there is a SNR, start a timer scaled based on that SNR.
DEBUG_MSG("rx_snr found. hop_limit:%d rx_snr:%f\n", p->hop_limit, p->rx_snr);
startTransmitTimerSNR(p->rx_snr);
}
}
void RadioLibInterface::startTransmitTimer(bool withDelay)
{
// If we have work to do and the timer wasn't already scheduled, schedule it now
if (!txQueue.empty()) {
uint32_t delay = !withDelay ? 1 : getTxDelayMsec();
// DEBUG_MSG("xmit timer %d\n", delay);
notifyLater(delay, TRANSMIT_DELAY_COMPLETED, false); // This will implicitly enable
}
}
void RadioLibInterface::startTransmitTimerSNR(float snr)
{
// If we have work to do and the timer wasn't already scheduled, schedule it now
if (!txQueue.empty()) {
uint32_t delay = getTxDelayMsecWeighted(snr);
// DEBUG_MSG("xmit timer %d\n", delay);
notifyLater(delay, TRANSMIT_DELAY_COMPLETED, false); // This will implicitly enable
}
}
void RadioLibInterface::handleTransmitInterrupt()
{
// DEBUG_MSG("handling lora TX interrupt\n");
// This can be null if we forced the device to enter standby mode. In that case
// ignore the transmit interrupt
if (sendingPacket)
completeSending();
}
void RadioLibInterface::completeSending()
{
// We are careful to clear sending packet before calling printPacket because
// that can take a long time
auto p = sendingPacket;
sendingPacket = NULL;
if (p) {
txGood++;
printPacket("Completed sending", p);
// We are done sending that packet, release it
packetPool.release(p);
// DEBUG_MSG("Done with send\n");
}
}
void RadioLibInterface::handleReceiveInterrupt()
{
uint32_t xmitMsec;
assert(isReceiving);
isReceiving = false;
// read the number of actually received bytes
size_t length = iface->getPacketLength();
xmitMsec = getPacketTime(length);
int state = iface->readData(radiobuf, length);
if (state != ERR_NONE) {
DEBUG_MSG("ignoring received packet due to error=%d\n", state);
rxBad++;
airTime->logAirtime(RX_ALL_LOG, xmitMsec);
} else {
// Skip the 4 headers that are at the beginning of the rxBuf
int32_t payloadLen = length - sizeof(PacketHeader);
const uint8_t *payload = radiobuf + sizeof(PacketHeader);
// check for short packets
if (payloadLen < 0) {
DEBUG_MSG("ignoring received packet too short\n");
rxBad++;
airTime->logAirtime(RX_ALL_LOG, xmitMsec);
} else {
const PacketHeader *h = (PacketHeader *)radiobuf;
rxGood++;
// Note: we deliver _all_ packets to our router (i.e. our interface is intentionally promiscuous).
// This allows the router and other apps on our node to sniff packets (usually routing) between other
// nodes.
MeshPacket *mp = packetPool.allocZeroed();
mp->from = h->from;
mp->to = h->to;
mp->id = h->id;
mp->channel = h->channel;
assert(HOP_MAX <= PACKET_FLAGS_HOP_MASK); // If hopmax changes, carefully check this code
mp->hop_limit = h->flags & PACKET_FLAGS_HOP_MASK;
mp->want_ack = !!(h->flags & PACKET_FLAGS_WANT_ACK_MASK);
addReceiveMetadata(mp);
mp->which_payloadVariant = MeshPacket_encrypted_tag; // Mark that the payload is still encrypted at this point
assert(((uint32_t)payloadLen) <= sizeof(mp->encrypted.bytes));
memcpy(mp->encrypted.bytes, payload, payloadLen);
mp->encrypted.size = payloadLen;
printPacket("Lora RX", mp);
// xmitMsec = getPacketTime(mp);
airTime->logAirtime(RX_LOG, xmitMsec);
deliverToReceiver(mp);
break;
default:
assert(0); // We expected to receive a valid notification from the ISR
}
}
}
/** start an immediate transmit */
void RadioLibInterface::startSend(MeshPacket *txp)
{
printPacket("Starting low level send", txp);
if (disabled || config.lora.tx_disabled) {
DEBUG_MSG("startSend is dropping tx packet because we are disabled\n");
packetPool.release(txp);
} else {
setStandby(); // Cancel any already in process receives
void RadioLibInterface::setTransmitDelay()
{
MeshPacket *p = txQueue.getFront();
// We want all sending/receiving to be done by our daemon thread.
// We use a delay here because this packet might have been sent in response to a packet we just received.
// So we want to make sure the other side has had a chance to reconfigure its radio.
configHardwareForSend(); // must be after setStandby
/* We assume if rx_snr = 0 and rx_rssi = 0, the packet was generated locally.
* This assumption is valid because of the offset generated by the radio to account for the noise
* floor.
*/
if (p->rx_snr == 0 && p->rx_rssi == 0) {
startTransmitTimer(true);
} else {
// If there is a SNR, start a timer scaled based on that SNR.
DEBUG_MSG("rx_snr found. hop_limit:%d rx_snr:%f\n", p->hop_limit, p->rx_snr);
startTransmitTimerSNR(p->rx_snr);
}
}
size_t numbytes = beginSending(txp);
void RadioLibInterface::startTransmitTimer(bool withDelay)
{
// If we have work to do and the timer wasn't already scheduled, schedule it now
if (!txQueue.empty()) {
uint32_t delay = !withDelay ? 1 : getTxDelayMsec();
// DEBUG_MSG("xmit timer %d\n", delay);
notifyLater(delay, TRANSMIT_DELAY_COMPLETED, false); // This will implicitly enable
}
}
int res = iface->startTransmit(radiobuf, numbytes);
if (res != ERR_NONE) {
RECORD_CRITICALERROR(CriticalErrorCode_RadioSpiBug);
void RadioLibInterface::startTransmitTimerSNR(float snr)
{
// If we have work to do and the timer wasn't already scheduled, schedule it now
if (!txQueue.empty()) {
uint32_t delay = getTxDelayMsecWeighted(snr);
// DEBUG_MSG("xmit timer %d\n", delay);
notifyLater(delay, TRANSMIT_DELAY_COMPLETED, false); // This will implicitly enable
}
}
// This send failed, but make sure to 'complete' it properly
void RadioLibInterface::handleTransmitInterrupt()
{
// DEBUG_MSG("handling lora TX interrupt\n");
// This can be null if we forced the device to enter standby mode. In that case
// ignore the transmit interrupt
if (sendingPacket)
completeSending();
startReceive(); // Restart receive mode (because startTransmit failed to put us in xmit mode)
}
// Must be done AFTER, starting transmit, because startTransmit clears (possibly stale) interrupt pending register bits
enableInterrupt(isrTxLevel0);
}
}
void RadioLibInterface::completeSending()
{
// We are careful to clear sending packet before calling printPacket because
// that can take a long time
auto p = sendingPacket;
sendingPacket = NULL;
if (p) {
txGood++;
printPacket("Completed sending", p);
// We are done sending that packet, release it
packetPool.release(p);
// DEBUG_MSG("Done with send\n");
}
}
void RadioLibInterface::handleReceiveInterrupt()
{
uint32_t xmitMsec;
assert(isReceiving);
isReceiving = false;
// read the number of actually received bytes
size_t length = iface->getPacketLength();
xmitMsec = getPacketTime(length);
int state = iface->readData(radiobuf, length);
if (state != ERR_NONE) {
DEBUG_MSG("ignoring received packet due to error=%d\n", state);
rxBad++;
airTime->logAirtime(RX_ALL_LOG, xmitMsec);
} else {
// Skip the 4 headers that are at the beginning of the rxBuf
int32_t payloadLen = length - sizeof(PacketHeader);
const uint8_t *payload = radiobuf + sizeof(PacketHeader);
// check for short packets
if (payloadLen < 0) {
DEBUG_MSG("ignoring received packet too short\n");
rxBad++;
airTime->logAirtime(RX_ALL_LOG, xmitMsec);
} else {
const PacketHeader *h = (PacketHeader *)radiobuf;
rxGood++;
// Note: we deliver _all_ packets to our router (i.e. our interface is intentionally promiscuous).
// This allows the router and other apps on our node to sniff packets (usually routing) between other
// nodes.
MeshPacket *mp = packetPool.allocZeroed();
mp->from = h->from;
mp->to = h->to;
mp->id = h->id;
mp->channel = h->channel;
assert(HOP_MAX <= PACKET_FLAGS_HOP_MASK); // If hopmax changes, carefully check this code
mp->hop_limit = h->flags & PACKET_FLAGS_HOP_MASK;
mp->want_ack = !!(h->flags & PACKET_FLAGS_WANT_ACK_MASK);
addReceiveMetadata(mp);
mp->which_payloadVariant = MeshPacket_encrypted_tag; // Mark that the payload is still encrypted at this point
assert(((uint32_t)payloadLen) <= sizeof(mp->encrypted.bytes));
memcpy(mp->encrypted.bytes, payload, payloadLen);
mp->encrypted.size = payloadLen;
printPacket("Lora RX", mp);
// xmitMsec = getPacketTime(mp);
airTime->logAirtime(RX_LOG, xmitMsec);
deliverToReceiver(mp);
}
}
}
/** start an immediate transmit */
void RadioLibInterface::startSend(MeshPacket * txp)
{
printPacket("Starting low level send", txp);
if (disabled || config.lora.tx_disabled) {
DEBUG_MSG("startSend is dropping tx packet because we are disabled\n");
packetPool.release(txp);
} else {
setStandby(); // Cancel any already in process receives
configHardwareForSend(); // must be after setStandby
size_t numbytes = beginSending(txp);
int res = iface->startTransmit(radiobuf, numbytes);
if (res != ERR_NONE) {
RECORD_CRITICALERROR(CriticalErrorCode_RadioSpiBug);
// This send failed, but make sure to 'complete' it properly
completeSending();
startReceive(); // Restart receive mode (because startTransmit failed to put us in xmit mode)
}
// Must be done AFTER, starting transmit, because startTransmit clears (possibly stale) interrupt pending register
// bits
enableInterrupt(isrTxLevel0);
}
}