Compare commits

...

29 Commits

Author SHA1 Message Date
Michael Gjelsø
09f90e6261
Merge a76e18a9d0 into 1d8638b47d 2025-07-28 16:35:07 +02:00
rradillen
1d8638b47d
[7353] Add all telemetry fields to json output (#7363)
* Serializer bugfix

* Remove duplicate test

* fix tests

* fix float precision issues

---------

Co-authored-by: Ben Meadors <benmmeadors@gmail.com>
2025-07-28 09:23:04 -05:00
Ben Meadors
3ecff48722
Set firmware edition (for events) from userprefs (#7488)
* Set firmware edition (for events) from userprefs

* Spaces in the right places
2025-07-28 07:31:33 -05:00
Michael Gjelsø
a76e18a9d0
Merge branch 'master' into use_detected_ina_addr 2025-07-17 12:25:20 +02:00
Michael Gjelsø
dc8b7a2b63
Merge branch 'master' into use_detected_ina_addr 2025-07-07 15:42:18 +02:00
Michael Gjelsø
d3fe19eca6
Merge branch 'master' into use_detected_ina_addr 2025-07-03 17:42:08 +02:00
Tom Fifield
6f93f81fbe
Merge branch 'master' into use_detected_ina_addr 2025-07-02 11:31:55 +10:00
Michael Gjelsø
a23ba533ac
Merge branch 'master' into use_detected_ina_addr 2025-06-27 20:30:29 +02:00
Michael Gjelsø
6e89d6bcb7
Merge branch 'meshtastic:master' into use_detected_ina_addr 2025-05-18 18:30:33 +02:00
michael
aca5249fd1 Trunk formating 2025-05-18 18:26:58 +02:00
Michael Gjelsø
fc8594a8d3
Merge branch 'master' into use_detected_ina_addr 2025-05-14 19:02:01 +02:00
Michael Gjelsø
39e42f64e9
Merge branch 'master' into use_detected_ina_addr 2025-05-13 20:40:20 +02:00
Tom Fifield
624fccb865
Merge branch 'master' into use_detected_ina_addr 2025-05-13 08:40:19 +10:00
Michael Gjelsø
4e527ff487
Merge branch 'master' into use_detected_ina_addr 2025-04-17 16:09:03 +02:00
Michael Gjelsø
d8ef6d5592
Merge branch 'master' into use_detected_ina_addr 2025-04-17 12:41:05 +02:00
Michael Gjelsø
0b325faf17
Merge branch 'master' into use_detected_ina_addr 2025-04-17 11:13:13 +02:00
Michael Gjelsø
c58bf5070b
Merge branch 'meshtastic:master' into use_detected_ina_addr 2025-03-31 18:00:56 +02:00
gjelsoe
07f955518a Use ScanI2C
Re-wrote some to use ScanI2C
2025-03-31 15:37:53 +02:00
Michael Gjelsø
bd19402411
Merge branch 'meshtastic:master' into use_detected_ina_addr 2025-03-06 16:56:17 +01:00
gjelsoe
bde3a88f41 Merge branch 'use_detected_ina_addr' of https://github.com/gjelsoe/firmware into use_detected_ina_addr 2025-03-02 14:59:06 +01:00
Michael Gjelsø
323e977961
Merge branch 'master' into use_detected_ina_addr 2025-03-01 14:06:16 +01:00
michael
57cf9ddd0a Trunk.... 2025-02-27 16:08:44 +01:00
gjelsoe
3df87d9fab Merge branch 'use_detected_ina_addr' of https://github.com/gjelsoe/firmware into use_detected_ina_addr 2025-02-27 15:24:55 +01:00
gjelsoe
81176de5a7 Update Power.cpp
Take two
2025-02-27 13:54:54 +08:00
gjelsoe
fc289198c9 Update Power.cpp
First stab at using I2C detected INA addr.
2025-02-27 13:54:54 +08:00
Michael Gjelsø
6e89ba98fd
Merge branch 'meshtastic:master' into use_detected_ina_addr 2025-02-17 16:28:21 +01:00
Michael Gjelsø
61912b0dd9
Merge branch 'meshtastic:master' into use_detected_ina_addr 2025-02-16 15:26:05 +01:00
gjelsoe
8b2a6c3b78 Update Power.cpp
Take two
2025-02-15 23:40:27 +01:00
gjelsoe
89e0857c73 Update Power.cpp
First stab at using I2C detected INA addr.
2025-02-15 19:18:25 +01:00
16 changed files with 1039 additions and 40 deletions

View File

@ -82,6 +82,8 @@ static const uint8_t ext_chrg_detect_value = EXT_CHRG_DETECT_VALUE;
#endif
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR
#include "main.h";
uint8_t INA_ADDR_LOCAL;
#if __has_include(<Adafruit_INA219.h>)
INA219Sensor ina219Sensor;
#else
@ -474,7 +476,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
if (hasINA()) {
// get current flow from INA sensor - negative value means power flowing into the battery
// default assuming BATTERY+ <--> INA_VIN+ <--> SHUNT RESISTOR <--> INA_VIN- <--> LOAD
LOG_DEBUG("Using INA on I2C addr 0x%x for charging detection", config.power.device_battery_ina_address);
// LOG_DEBUG("Using INA on I2C addr 0x%x for charging detection", config.power.device_battery_ina_address);
LOG_DEBUG("Using INA on I2C addr 0x%x for charging detection", INA_ADDR_LOCAL);
#if defined(INA_CHARGING_DETECTION_INVERT)
return getINACurrent() > 0;
#else
@ -517,61 +520,131 @@ class AnalogBatteryLevel : public HasBatteryLevel
#endif
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR
/*
Read Voltage from INA using autodetect of addr first else use addr in config.power.device_battery_ina_address
*/
uint16_t getINAVoltage()
{
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
return ina219Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
return ina226Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
return ina260Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
return ina3221Sensor.getBusVoltageMv();
if (!config.power.device_battery_ina_address) {
if (ina_found.type != ScanI2C::DeviceType::NONE) {
switch (ina_found.type) {
case ScanI2C::DeviceType::INA219:
return ina219Sensor.getBusVoltageMv();
break;
case ScanI2C::DeviceType::INA226:
return ina226Sensor.getBusVoltageMv();
break;
case ScanI2C::DeviceType::INA260:
return ina260Sensor.getBusVoltageMv();
break;
case ScanI2C::DeviceType::INA3221:
return ina3221Sensor.getBusVoltageMv();
break;
}
}
} else if (config.power.device_battery_ina_address) {
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
return ina219Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
return ina226Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
return ina260Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
return ina3221Sensor.getBusVoltageMv();
}
}
return 0;
}
/*
Read Current from INA using autodetect of addr first else use addr in config.power.device_battery_ina_address
*/
int16_t getINACurrent()
{
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
return ina219Sensor.getCurrentMa();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
return ina226Sensor.getCurrentMa();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
return ina3221Sensor.getCurrentMa();
if (!config.power.device_battery_ina_address) {
if (ina_found.type != ScanI2C::DeviceType::NONE) {
switch (ina_found.type) {
case ScanI2C::DeviceType::INA219:
return ina219Sensor.getCurrentMa();
case ScanI2C::DeviceType::INA226:
return ina226Sensor.getCurrentMa();
case ScanI2C::DeviceType::INA3221:
return ina3221Sensor.getCurrentMa();
}
}
} else if (config.power.device_battery_ina_address) {
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
return ina219Sensor.getCurrentMa();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
return ina226Sensor.getCurrentMa();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
return ina3221Sensor.getCurrentMa();
}
}
return 0;
}
bool hasINA()
/*
Use autodetect of addr first else use addr in config.power.device_battery_ina_address
Store INA addr in local variable for later use.
*/
{
if (!config.power.device_battery_ina_address) {
return false;
}
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
if (!ina219Sensor.isInitialized())
return ina219Sensor.runOnce() > 0;
return ina219Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
if (!ina226Sensor.isInitialized())
return ina226Sensor.runOnce() > 0;
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
if (!ina260Sensor.isInitialized())
return ina260Sensor.runOnce() > 0;
return ina260Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
if (!ina3221Sensor.isInitialized())
return ina3221Sensor.runOnce() > 0;
return ina3221Sensor.isRunning();
if (ina_found.type != ScanI2C::DeviceType::NONE) {
INA_ADDR_LOCAL = ina_found.address.address;
switch (ina_found.type) {
case ScanI2C::DeviceType::INA219:
if (!ina219Sensor.isInitialized())
return ina219Sensor.runOnce() > 0;
return ina219Sensor.isRunning();
case ScanI2C::DeviceType::INA226:
if (!ina226Sensor.isInitialized())
return ina226Sensor.runOnce() > 0;
return ina226Sensor.isRunning();
case ScanI2C::DeviceType::INA260:
if (!ina260Sensor.isInitialized())
return ina260Sensor.runOnce() > 0;
return ina260Sensor.isRunning();
case ScanI2C::DeviceType::INA3221:
if (!ina3221Sensor.isInitialized())
return ina3221Sensor.runOnce() > 0;
return ina3221Sensor.isRunning();
}
}
} else if (config.power.device_battery_ina_address) {
INA_ADDR_LOCAL = config.power.device_battery_ina_address;
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
if (!ina219Sensor.isInitialized())
return ina219Sensor.runOnce() > 0;
return ina219Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA226].first ==
config.power.device_battery_ina_address) {
if (!ina226Sensor.isInitialized())
return ina226Sensor.runOnce() > 0;
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
if (!ina260Sensor.isInitialized())
return ina260Sensor.runOnce() > 0;
return ina260Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
if (!ina3221Sensor.isInitialized())
return ina3221Sensor.runOnce() > 0;
return ina3221Sensor.isRunning();
}
}
INA_ADDR_LOCAL = 0;
return false;
}
#endif

View File

@ -41,6 +41,12 @@ ScanI2C::FoundDevice ScanI2C::firstAccelerometer() const
return firstOfOrNONE(9, types);
}
ScanI2C::FoundDevice ScanI2C::firstINA() const
{
ScanI2C::DeviceType types[] = {INA219, INA226, INA260, INA3221};
return firstOfOrNONE(4, types);
}
ScanI2C::FoundDevice ScanI2C::firstAQI() const
{
ScanI2C::DeviceType types[] = {PMSA0031, SCD4X};

View File

@ -132,6 +132,8 @@ class ScanI2C
FoundDevice firstAccelerometer() const;
FoundDevice firstINA() const;
FoundDevice firstAQI() const;
FoundDevice firstRGBLED() const;

View File

@ -194,9 +194,15 @@ ScanI2C::DeviceAddress rtc_found = ScanI2C::ADDRESS_NONE;
ScanI2C::DeviceAddress accelerometer_found = ScanI2C::ADDRESS_NONE;
// The I2C address of the RGB LED (if found)
ScanI2C::FoundDevice rgb_found = ScanI2C::FoundDevice(ScanI2C::DeviceType::NONE, ScanI2C::ADDRESS_NONE);
// The I2C address of the INA Module (if found)
ScanI2C::FoundDevice ina_found = ScanI2C::FoundDevice(ScanI2C::DeviceType::NONE, ScanI2C::ADDRESS_NONE);
ScanI2C::DeviceAddress ina_Address = ScanI2C::ADDRESS_NONE;
/// The I2C address of our Air Quality Indicator (if found)
ScanI2C::DeviceAddress aqi_found = ScanI2C::ADDRESS_NONE;
#ifdef T_WATCH_S3
Adafruit_DRV2605 drv;
#endif
@ -653,6 +659,12 @@ void setup()
LOG_DEBUG("acc_info = %i", acc_info.type);
#endif
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR && !defined(ARCH_PORTDUINO)
auto ina_Info = i2cScanner->firstINA();
// ina_Address = ina_Info.type != ScanI2C::DeviceType::NONE ? ina_Info.address : ina_Address;
LOG_DEBUG("ina_info = %i", ina_Info.type);
#endif
scannerToSensorsMap(i2cScanner, ScanI2C::DeviceType::BME_680, meshtastic_TelemetrySensorType_BME680);
scannerToSensorsMap(i2cScanner, ScanI2C::DeviceType::BME_280, meshtastic_TelemetrySensorType_BME280);
scannerToSensorsMap(i2cScanner, ScanI2C::DeviceType::BMP_280, meshtastic_TelemetrySensorType_BMP280);

View File

@ -35,6 +35,8 @@ extern bool kb_found;
extern ScanI2C::DeviceAddress rtc_found;
extern ScanI2C::DeviceAddress accelerometer_found;
extern ScanI2C::FoundDevice rgb_found;
// extern ScanI2C::DeviceAddress ina_Address;
extern ScanI2C::FoundDevice ina_found;
extern ScanI2C::DeviceAddress aqi_found;
extern bool eink_found;

View File

@ -406,6 +406,9 @@ NodeDB::NodeDB()
config.position.gps_mode = meshtastic_Config_PositionConfig_GpsMode_ENABLED;
config.position.gps_enabled = 0;
}
#ifdef USERPREFS_FIRMWARE_EDITION
myNodeInfo.firmware_edition = USERPREFS_FIRMWARE_EDITION;
#endif
#ifdef USERPREFS_FIXED_GPS
if (myNodeInfo.reboot_count == 1) { // Check if First boot ever or after Factory Reset.
meshtastic_Position fixedGPS = meshtastic_Position_init_default;

View File

@ -100,6 +100,9 @@ std::string MeshPacketSerializer::JsonSerialize(const meshtastic_MeshPacket *mp,
if (decoded->variant.environment_metrics.has_iaq) {
msgPayload["iaq"] = new JSONValue((uint)decoded->variant.environment_metrics.iaq);
}
if (decoded->variant.environment_metrics.has_distance) {
msgPayload["distance"] = new JSONValue(decoded->variant.environment_metrics.distance);
}
if (decoded->variant.environment_metrics.has_wind_speed) {
msgPayload["wind_speed"] = new JSONValue(decoded->variant.environment_metrics.wind_speed);
}
@ -115,6 +118,27 @@ std::string MeshPacketSerializer::JsonSerialize(const meshtastic_MeshPacket *mp,
if (decoded->variant.environment_metrics.has_radiation) {
msgPayload["radiation"] = new JSONValue(decoded->variant.environment_metrics.radiation);
}
if (decoded->variant.environment_metrics.has_ir_lux) {
msgPayload["ir_lux"] = new JSONValue(decoded->variant.environment_metrics.ir_lux);
}
if (decoded->variant.environment_metrics.has_uv_lux) {
msgPayload["uv_lux"] = new JSONValue(decoded->variant.environment_metrics.uv_lux);
}
if (decoded->variant.environment_metrics.has_weight) {
msgPayload["weight"] = new JSONValue(decoded->variant.environment_metrics.weight);
}
if (decoded->variant.environment_metrics.has_rainfall_1h) {
msgPayload["rainfall_1h"] = new JSONValue(decoded->variant.environment_metrics.rainfall_1h);
}
if (decoded->variant.environment_metrics.has_rainfall_24h) {
msgPayload["rainfall_24h"] = new JSONValue(decoded->variant.environment_metrics.rainfall_24h);
}
if (decoded->variant.environment_metrics.has_soil_moisture) {
msgPayload["soil_moisture"] = new JSONValue((uint)decoded->variant.environment_metrics.soil_moisture);
}
if (decoded->variant.environment_metrics.has_soil_temperature) {
msgPayload["soil_temperature"] = new JSONValue(decoded->variant.environment_metrics.soil_temperature);
}
} else if (decoded->which_variant == meshtastic_Telemetry_air_quality_metrics_tag) {
if (decoded->variant.air_quality_metrics.has_pm10_standard) {
msgPayload["pm10"] = new JSONValue((unsigned int)decoded->variant.air_quality_metrics.pm10_standard);

View File

@ -0,0 +1,50 @@
#include "../test_helpers.h"
// Test encrypted packet serialization
void test_encrypted_packet_serialization()
{
meshtastic_MeshPacket packet = meshtastic_MeshPacket_init_zero;
packet.from = 0x11223344;
packet.to = 0x55667788;
packet.id = 0x9999;
packet.which_payload_variant = meshtastic_MeshPacket_encrypted_tag;
// Add some dummy encrypted data
const char *encrypted_data = "encrypted_payload_data";
packet.encrypted.size = strlen(encrypted_data);
memcpy(packet.encrypted.bytes, encrypted_data, packet.encrypted.size);
std::string json = MeshPacketSerializer::JsonSerializeEncrypted(&packet);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check basic packet fields
TEST_ASSERT_TRUE(jsonObj.find("from") != jsonObj.end());
TEST_ASSERT_EQUAL(0x11223344, (uint32_t)jsonObj["from"]->AsNumber());
TEST_ASSERT_TRUE(jsonObj.find("to") != jsonObj.end());
TEST_ASSERT_EQUAL(0x55667788, (uint32_t)jsonObj["to"]->AsNumber());
TEST_ASSERT_TRUE(jsonObj.find("id") != jsonObj.end());
TEST_ASSERT_EQUAL(0x9999, (uint32_t)jsonObj["id"]->AsNumber());
// Check that it has encrypted data fields (not "payload" but "bytes" and "size")
TEST_ASSERT_TRUE(jsonObj.find("bytes") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["bytes"]->IsString());
TEST_ASSERT_TRUE(jsonObj.find("size") != jsonObj.end());
TEST_ASSERT_EQUAL(22, (int)jsonObj["size"]->AsNumber()); // strlen("encrypted_payload_data") = 22
// The encrypted data should be hex-encoded
std::string encrypted_hex = jsonObj["bytes"]->AsString();
TEST_ASSERT_TRUE(encrypted_hex.length() > 0);
// Should be twice the size of the original data (hex encoding)
TEST_ASSERT_EQUAL(44, encrypted_hex.length()); // 22 * 2 = 44
delete root;
}

View File

@ -0,0 +1,51 @@
#include "../test_helpers.h"
static size_t encode_user_info(uint8_t *buffer, size_t buffer_size)
{
meshtastic_User user = meshtastic_User_init_zero;
strcpy(user.short_name, "TEST");
strcpy(user.long_name, "Test User");
strcpy(user.id, "!12345678");
user.hw_model = meshtastic_HardwareModel_HELTEC_V3;
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_User_msg, &user);
return stream.bytes_written;
}
// Test NODEINFO_APP port
void test_nodeinfo_serialization()
{
uint8_t buffer[256];
size_t payload_size = encode_user_info(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_NODEINFO_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check message type
TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end());
TEST_ASSERT_EQUAL_STRING("nodeinfo", jsonObj["type"]->AsString().c_str());
// Check payload
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Verify user data
TEST_ASSERT_TRUE(payload.find("shortname") != payload.end());
TEST_ASSERT_EQUAL_STRING("TEST", payload["shortname"]->AsString().c_str());
TEST_ASSERT_TRUE(payload.find("longname") != payload.end());
TEST_ASSERT_EQUAL_STRING("Test User", payload["longname"]->AsString().c_str());
delete root;
}

View File

@ -0,0 +1,57 @@
#include "../test_helpers.h"
static size_t encode_position(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Position position = meshtastic_Position_init_zero;
position.latitude_i = 374208000; // 37.4208 degrees * 1e7
position.longitude_i = -1221981000; // -122.1981 degrees * 1e7
position.altitude = 123;
position.time = 1609459200;
position.has_altitude = true;
position.has_latitude_i = true;
position.has_longitude_i = true;
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Position_msg, &position);
return stream.bytes_written;
}
// Test POSITION_APP port
void test_position_serialization()
{
uint8_t buffer[256];
size_t payload_size = encode_position(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_POSITION_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check message type
TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end());
TEST_ASSERT_EQUAL_STRING("position", jsonObj["type"]->AsString().c_str());
// Check payload
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Verify position data
TEST_ASSERT_TRUE(payload.find("latitude_i") != payload.end());
TEST_ASSERT_EQUAL(374208000, (int)payload["latitude_i"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("longitude_i") != payload.end());
TEST_ASSERT_EQUAL(-1221981000, (int)payload["longitude_i"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("altitude") != payload.end());
TEST_ASSERT_EQUAL(123, (int)payload["altitude"]->AsNumber());
delete root;
}

View File

@ -0,0 +1,528 @@
#include "../test_helpers.h"
// Helper function to create and encode device metrics
static size_t encode_telemetry_device_metrics(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero;
telemetry.time = 1609459200;
telemetry.which_variant = meshtastic_Telemetry_device_metrics_tag;
telemetry.variant.device_metrics.battery_level = 85;
telemetry.variant.device_metrics.has_battery_level = true;
telemetry.variant.device_metrics.voltage = 3.72f;
telemetry.variant.device_metrics.has_voltage = true;
telemetry.variant.device_metrics.channel_utilization = 15.56f;
telemetry.variant.device_metrics.has_channel_utilization = true;
telemetry.variant.device_metrics.air_util_tx = 8.23f;
telemetry.variant.device_metrics.has_air_util_tx = true;
telemetry.variant.device_metrics.uptime_seconds = 12345;
telemetry.variant.device_metrics.has_uptime_seconds = true;
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry);
return stream.bytes_written;
}
// Helper function to create and encode empty environment metrics (no fields set)
static size_t encode_telemetry_environment_metrics_empty(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero;
telemetry.time = 1609459200;
telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag;
// NO fields are set - all has_* flags remain false
// This tests that empty environment metrics don't produce any JSON fields
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry);
return stream.bytes_written;
}
// Helper function to create environment metrics with ALL possible fields set
// This function should be updated whenever new fields are added to the protobuf
static size_t encode_telemetry_environment_metrics_all_fields(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero;
telemetry.time = 1609459200;
telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag;
// Basic environment metrics
telemetry.variant.environment_metrics.temperature = 23.56f;
telemetry.variant.environment_metrics.has_temperature = true;
telemetry.variant.environment_metrics.relative_humidity = 65.43f;
telemetry.variant.environment_metrics.has_relative_humidity = true;
telemetry.variant.environment_metrics.barometric_pressure = 1013.27f;
telemetry.variant.environment_metrics.has_barometric_pressure = true;
// Gas and air quality
telemetry.variant.environment_metrics.gas_resistance = 50.58f;
telemetry.variant.environment_metrics.has_gas_resistance = true;
telemetry.variant.environment_metrics.iaq = 120;
telemetry.variant.environment_metrics.has_iaq = true;
// Power measurements
telemetry.variant.environment_metrics.voltage = 3.34f;
telemetry.variant.environment_metrics.has_voltage = true;
telemetry.variant.environment_metrics.current = 0.53f;
telemetry.variant.environment_metrics.has_current = true;
// Light measurements (ALL 4 types)
telemetry.variant.environment_metrics.lux = 450.12f;
telemetry.variant.environment_metrics.has_lux = true;
telemetry.variant.environment_metrics.white_lux = 380.95f;
telemetry.variant.environment_metrics.has_white_lux = true;
telemetry.variant.environment_metrics.ir_lux = 25.37f;
telemetry.variant.environment_metrics.has_ir_lux = true;
telemetry.variant.environment_metrics.uv_lux = 15.68f;
telemetry.variant.environment_metrics.has_uv_lux = true;
// Distance measurement
telemetry.variant.environment_metrics.distance = 150.29f;
telemetry.variant.environment_metrics.has_distance = true;
// Wind measurements (ALL 4 types)
telemetry.variant.environment_metrics.wind_direction = 180;
telemetry.variant.environment_metrics.has_wind_direction = true;
telemetry.variant.environment_metrics.wind_speed = 5.52f;
telemetry.variant.environment_metrics.has_wind_speed = true;
telemetry.variant.environment_metrics.wind_gust = 8.24f;
telemetry.variant.environment_metrics.has_wind_gust = true;
telemetry.variant.environment_metrics.wind_lull = 2.13f;
telemetry.variant.environment_metrics.has_wind_lull = true;
// Weight measurement
telemetry.variant.environment_metrics.weight = 75.56f;
telemetry.variant.environment_metrics.has_weight = true;
// Radiation measurement
telemetry.variant.environment_metrics.radiation = 0.13f;
telemetry.variant.environment_metrics.has_radiation = true;
// Rainfall measurements (BOTH types)
telemetry.variant.environment_metrics.rainfall_1h = 2.57f;
telemetry.variant.environment_metrics.has_rainfall_1h = true;
telemetry.variant.environment_metrics.rainfall_24h = 15.89f;
telemetry.variant.environment_metrics.has_rainfall_24h = true;
// Soil measurements (BOTH types)
telemetry.variant.environment_metrics.soil_moisture = 85;
telemetry.variant.environment_metrics.has_soil_moisture = true;
telemetry.variant.environment_metrics.soil_temperature = 18.54f;
telemetry.variant.environment_metrics.has_soil_temperature = true;
// IMPORTANT: When new environment fields are added to the protobuf,
// they MUST be added here too, or the coverage test will fail!
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry);
return stream.bytes_written;
}
// Helper function to create and encode environment metrics with all current fields
static size_t encode_telemetry_environment_metrics(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero;
telemetry.time = 1609459200;
telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag;
// Basic environment metrics
telemetry.variant.environment_metrics.temperature = 23.56f;
telemetry.variant.environment_metrics.has_temperature = true;
telemetry.variant.environment_metrics.relative_humidity = 65.43f;
telemetry.variant.environment_metrics.has_relative_humidity = true;
telemetry.variant.environment_metrics.barometric_pressure = 1013.27f;
telemetry.variant.environment_metrics.has_barometric_pressure = true;
// Gas and air quality
telemetry.variant.environment_metrics.gas_resistance = 50.58f;
telemetry.variant.environment_metrics.has_gas_resistance = true;
telemetry.variant.environment_metrics.iaq = 120;
telemetry.variant.environment_metrics.has_iaq = true;
// Power measurements
telemetry.variant.environment_metrics.voltage = 3.34f;
telemetry.variant.environment_metrics.has_voltage = true;
telemetry.variant.environment_metrics.current = 0.53f;
telemetry.variant.environment_metrics.has_current = true;
// Light measurements
telemetry.variant.environment_metrics.lux = 450.12f;
telemetry.variant.environment_metrics.has_lux = true;
telemetry.variant.environment_metrics.white_lux = 380.95f;
telemetry.variant.environment_metrics.has_white_lux = true;
telemetry.variant.environment_metrics.ir_lux = 25.37f;
telemetry.variant.environment_metrics.has_ir_lux = true;
telemetry.variant.environment_metrics.uv_lux = 15.68f;
telemetry.variant.environment_metrics.has_uv_lux = true;
// Distance measurement
telemetry.variant.environment_metrics.distance = 150.29f;
telemetry.variant.environment_metrics.has_distance = true;
// Wind measurements
telemetry.variant.environment_metrics.wind_direction = 180;
telemetry.variant.environment_metrics.has_wind_direction = true;
telemetry.variant.environment_metrics.wind_speed = 5.52f;
telemetry.variant.environment_metrics.has_wind_speed = true;
telemetry.variant.environment_metrics.wind_gust = 8.24f;
telemetry.variant.environment_metrics.has_wind_gust = true;
telemetry.variant.environment_metrics.wind_lull = 2.13f;
telemetry.variant.environment_metrics.has_wind_lull = true;
// Weight measurement
telemetry.variant.environment_metrics.weight = 75.56f;
telemetry.variant.environment_metrics.has_weight = true;
// Radiation measurement
telemetry.variant.environment_metrics.radiation = 0.13f;
telemetry.variant.environment_metrics.has_radiation = true;
// Rainfall measurements
telemetry.variant.environment_metrics.rainfall_1h = 2.57f;
telemetry.variant.environment_metrics.has_rainfall_1h = true;
telemetry.variant.environment_metrics.rainfall_24h = 15.89f;
telemetry.variant.environment_metrics.has_rainfall_24h = true;
// Soil measurements
telemetry.variant.environment_metrics.soil_moisture = 85;
telemetry.variant.environment_metrics.has_soil_moisture = true;
telemetry.variant.environment_metrics.soil_temperature = 18.54f;
telemetry.variant.environment_metrics.has_soil_temperature = true;
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry);
return stream.bytes_written;
}
// Test TELEMETRY_APP port with device metrics
void test_telemetry_device_metrics_serialization()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_device_metrics(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check message type
TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end());
TEST_ASSERT_EQUAL_STRING("telemetry", jsonObj["type"]->AsString().c_str());
// Check payload
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Verify telemetry data
TEST_ASSERT_TRUE(payload.find("battery_level") != payload.end());
TEST_ASSERT_EQUAL(85, (int)payload["battery_level"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("voltage") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 3.72f, payload["voltage"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("channel_utilization") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.56f, payload["channel_utilization"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("uptime_seconds") != payload.end());
TEST_ASSERT_EQUAL(12345, (int)payload["uptime_seconds"]->AsNumber());
// Note: JSON serialization may not preserve exact 2-decimal formatting due to float precision
// We verify the numeric values are correct within tolerance
delete root;
}
// Test that telemetry environment metrics are properly serialized
void test_telemetry_environment_metrics_serialization()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check payload exists
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Test key fields that should be present in the serializer
TEST_ASSERT_TRUE(payload.find("temperature") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 23.56f, payload["temperature"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 65.43f, payload["relative_humidity"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("distance") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 150.29f, payload["distance"]->AsNumber());
// Note: JSON serialization may have float precision limitations
// We focus on verifying numeric accuracy rather than exact string formatting
delete root;
}
// Test comprehensive environment metrics coverage
void test_telemetry_environment_metrics_comprehensive()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check payload exists
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Check all 15 originally supported fields
TEST_ASSERT_TRUE(payload.find("temperature") != payload.end());
TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end());
TEST_ASSERT_TRUE(payload.find("barometric_pressure") != payload.end());
TEST_ASSERT_TRUE(payload.find("gas_resistance") != payload.end());
TEST_ASSERT_TRUE(payload.find("voltage") != payload.end());
TEST_ASSERT_TRUE(payload.find("current") != payload.end());
TEST_ASSERT_TRUE(payload.find("iaq") != payload.end());
TEST_ASSERT_TRUE(payload.find("distance") != payload.end());
TEST_ASSERT_TRUE(payload.find("lux") != payload.end());
TEST_ASSERT_TRUE(payload.find("white_lux") != payload.end());
TEST_ASSERT_TRUE(payload.find("wind_direction") != payload.end());
TEST_ASSERT_TRUE(payload.find("wind_speed") != payload.end());
TEST_ASSERT_TRUE(payload.find("wind_gust") != payload.end());
TEST_ASSERT_TRUE(payload.find("wind_lull") != payload.end());
TEST_ASSERT_TRUE(payload.find("radiation") != payload.end());
delete root;
}
// Test for the 7 environment fields that were added to complete coverage
void test_telemetry_environment_metrics_missing_fields()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check payload exists
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Check the 7 fields that were previously missing
TEST_ASSERT_TRUE(payload.find("ir_lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 25.37f, payload["ir_lux"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("uv_lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.68f, payload["uv_lux"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("weight") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 75.56f, payload["weight"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("rainfall_1h") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.57f, payload["rainfall_1h"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("rainfall_24h") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.89f, payload["rainfall_24h"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("soil_moisture") != payload.end());
TEST_ASSERT_EQUAL(85, (int)payload["soil_moisture"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("soil_temperature") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 18.54f, payload["soil_temperature"]->AsNumber());
// Note: JSON float serialization may not preserve exact decimal formatting
// We verify the values are numerically correct within tolerance
delete root;
}
// Test that ALL environment fields are serialized (canary test for forgotten fields)
// This test will FAIL if a new environment field is added to the protobuf but not to the serializer
void test_telemetry_environment_metrics_complete_coverage()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_environment_metrics_all_fields(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check payload exists
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// ✅ ALL 22 environment fields MUST be present and correct
// If this test fails, it means either:
// 1. A new field was added to the protobuf but not to the serializer
// 2. The encode_telemetry_environment_metrics_all_fields() function wasn't updated
// Basic environment (3 fields)
TEST_ASSERT_TRUE(payload.find("temperature") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 23.56f, payload["temperature"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 65.43f, payload["relative_humidity"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("barometric_pressure") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 1013.27f, payload["barometric_pressure"]->AsNumber());
// Gas and air quality (2 fields)
TEST_ASSERT_TRUE(payload.find("gas_resistance") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 50.58f, payload["gas_resistance"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("iaq") != payload.end());
TEST_ASSERT_EQUAL(120, (int)payload["iaq"]->AsNumber());
// Power measurements (2 fields)
TEST_ASSERT_TRUE(payload.find("voltage") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 3.34f, payload["voltage"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("current") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 0.53f, payload["current"]->AsNumber());
// Light measurements (4 fields)
TEST_ASSERT_TRUE(payload.find("lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 450.12f, payload["lux"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("white_lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 380.95f, payload["white_lux"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("ir_lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 25.37f, payload["ir_lux"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("uv_lux") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.68f, payload["uv_lux"]->AsNumber());
// Distance measurement (1 field)
TEST_ASSERT_TRUE(payload.find("distance") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 150.29f, payload["distance"]->AsNumber());
// Wind measurements (4 fields)
TEST_ASSERT_TRUE(payload.find("wind_direction") != payload.end());
TEST_ASSERT_EQUAL(180, (int)payload["wind_direction"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("wind_speed") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 5.52f, payload["wind_speed"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("wind_gust") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 8.24f, payload["wind_gust"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("wind_lull") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.13f, payload["wind_lull"]->AsNumber());
// Weight measurement (1 field)
TEST_ASSERT_TRUE(payload.find("weight") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 75.56f, payload["weight"]->AsNumber());
// Radiation measurement (1 field)
TEST_ASSERT_TRUE(payload.find("radiation") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 0.13f, payload["radiation"]->AsNumber());
// Rainfall measurements (2 fields)
TEST_ASSERT_TRUE(payload.find("rainfall_1h") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.57f, payload["rainfall_1h"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("rainfall_24h") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.89f, payload["rainfall_24h"]->AsNumber());
// Soil measurements (2 fields)
TEST_ASSERT_TRUE(payload.find("soil_moisture") != payload.end());
TEST_ASSERT_EQUAL(85, (int)payload["soil_moisture"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("soil_temperature") != payload.end());
TEST_ASSERT_FLOAT_WITHIN(0.01f, 18.54f, payload["soil_temperature"]->AsNumber());
// Total: 22 environment fields
// This test ensures 100% coverage of environment metrics
// Note: JSON float serialization precision may vary due to the underlying library
// The important aspect is that all values are numerically accurate within tolerance
delete root;
}
// Test that unset environment fields are not present in JSON
void test_telemetry_environment_metrics_unset_fields()
{
uint8_t buffer[256];
size_t payload_size = encode_telemetry_environment_metrics_empty(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check payload exists
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// With completely empty environment metrics, NO fields should be present
// Only basic telemetry fields like "time" might be present
// All 22 environment fields should be absent (none were set)
TEST_ASSERT_TRUE(payload.find("temperature") == payload.end());
TEST_ASSERT_TRUE(payload.find("relative_humidity") == payload.end());
TEST_ASSERT_TRUE(payload.find("barometric_pressure") == payload.end());
TEST_ASSERT_TRUE(payload.find("gas_resistance") == payload.end());
TEST_ASSERT_TRUE(payload.find("iaq") == payload.end());
TEST_ASSERT_TRUE(payload.find("voltage") == payload.end());
TEST_ASSERT_TRUE(payload.find("current") == payload.end());
TEST_ASSERT_TRUE(payload.find("lux") == payload.end());
TEST_ASSERT_TRUE(payload.find("white_lux") == payload.end());
TEST_ASSERT_TRUE(payload.find("ir_lux") == payload.end());
TEST_ASSERT_TRUE(payload.find("uv_lux") == payload.end());
TEST_ASSERT_TRUE(payload.find("distance") == payload.end());
TEST_ASSERT_TRUE(payload.find("wind_direction") == payload.end());
TEST_ASSERT_TRUE(payload.find("wind_speed") == payload.end());
TEST_ASSERT_TRUE(payload.find("wind_gust") == payload.end());
TEST_ASSERT_TRUE(payload.find("wind_lull") == payload.end());
TEST_ASSERT_TRUE(payload.find("weight") == payload.end());
TEST_ASSERT_TRUE(payload.find("radiation") == payload.end());
TEST_ASSERT_TRUE(payload.find("rainfall_1h") == payload.end());
TEST_ASSERT_TRUE(payload.find("rainfall_24h") == payload.end());
TEST_ASSERT_TRUE(payload.find("soil_moisture") == payload.end());
TEST_ASSERT_TRUE(payload.find("soil_temperature") == payload.end());
delete root;
}

View File

@ -0,0 +1,42 @@
#include "../test_helpers.h"
// Test TEXT_MESSAGE_APP port
void test_text_message_serialization()
{
const char *test_text = "Hello Meshtastic!";
meshtastic_MeshPacket packet =
create_test_packet(meshtastic_PortNum_TEXT_MESSAGE_APP, (const uint8_t *)test_text, strlen(test_text));
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check basic packet fields
TEST_ASSERT_TRUE(jsonObj.find("from") != jsonObj.end());
TEST_ASSERT_EQUAL(0x11223344, (uint32_t)jsonObj["from"]->AsNumber());
TEST_ASSERT_TRUE(jsonObj.find("to") != jsonObj.end());
TEST_ASSERT_EQUAL(0x55667788, (uint32_t)jsonObj["to"]->AsNumber());
TEST_ASSERT_TRUE(jsonObj.find("id") != jsonObj.end());
TEST_ASSERT_EQUAL(0x9999, (uint32_t)jsonObj["id"]->AsNumber());
// Check message type
TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end());
TEST_ASSERT_EQUAL_STRING("text", jsonObj["type"]->AsString().c_str());
// Check payload
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
TEST_ASSERT_TRUE(payload.find("text") != payload.end());
TEST_ASSERT_EQUAL_STRING("Hello Meshtastic!", payload["text"]->AsString().c_str());
delete root;
}

View File

@ -0,0 +1,53 @@
#include "../test_helpers.h"
static size_t encode_waypoint(uint8_t *buffer, size_t buffer_size)
{
meshtastic_Waypoint waypoint = meshtastic_Waypoint_init_zero;
waypoint.id = 12345;
waypoint.latitude_i = 374208000;
waypoint.longitude_i = -1221981000;
waypoint.expire = 1609459200 + 3600; // 1 hour from now
strcpy(waypoint.name, "Test Point");
strcpy(waypoint.description, "Test waypoint description");
pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size);
pb_encode(&stream, &meshtastic_Waypoint_msg, &waypoint);
return stream.bytes_written;
}
// Test WAYPOINT_APP port
void test_waypoint_serialization()
{
uint8_t buffer[256];
size_t payload_size = encode_waypoint(buffer, sizeof(buffer));
meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_WAYPOINT_APP, buffer, payload_size);
std::string json = MeshPacketSerializer::JsonSerialize(&packet, false);
TEST_ASSERT_TRUE(json.length() > 0);
JSONValue *root = JSON::Parse(json.c_str());
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_TRUE(root->IsObject());
JSONObject jsonObj = root->AsObject();
// Check message type
TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end());
TEST_ASSERT_EQUAL_STRING("waypoint", jsonObj["type"]->AsString().c_str());
// Check payload
TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end());
TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject());
JSONObject payload = jsonObj["payload"]->AsObject();
// Verify waypoint data
TEST_ASSERT_TRUE(payload.find("id") != payload.end());
TEST_ASSERT_EQUAL(12345, (int)payload["id"]->AsNumber());
TEST_ASSERT_TRUE(payload.find("name") != payload.end());
TEST_ASSERT_EQUAL_STRING("Test Point", payload["name"]->AsString().c_str());
delete root;
}

View File

@ -0,0 +1,44 @@
#pragma once
#include "serialization/JSON.h"
#include "serialization/MeshPacketSerializer.h"
#include <Arduino.h>
#include <meshtastic/mesh.pb.h>
#include <meshtastic/mqtt.pb.h>
#include <meshtastic/telemetry.pb.h>
#include <pb_decode.h>
#include <pb_encode.h>
#include <unity.h>
// Helper function to create a test packet with the given port and payload
static meshtastic_MeshPacket create_test_packet(meshtastic_PortNum port, const uint8_t *payload, size_t payload_size)
{
meshtastic_MeshPacket packet = meshtastic_MeshPacket_init_zero;
packet.id = 0x9999;
packet.from = 0x11223344;
packet.to = 0x55667788;
packet.channel = 0;
packet.hop_limit = 3;
packet.want_ack = false;
packet.priority = meshtastic_MeshPacket_Priority_UNSET;
packet.rx_time = 1609459200;
packet.rx_snr = 10.5f;
packet.hop_start = 3;
packet.rx_rssi = -85;
packet.delayed = meshtastic_MeshPacket_Delayed_NO_DELAY;
// Set decoded variant
packet.which_payload_variant = meshtastic_MeshPacket_decoded_tag;
packet.decoded.portnum = port;
memcpy(packet.decoded.payload.bytes, payload, payload_size);
packet.decoded.payload.size = payload_size;
packet.decoded.want_response = false;
packet.decoded.dest = 0x55667788;
packet.decoded.source = 0x11223344;
packet.decoded.request_id = 0;
packet.decoded.reply_id = 0;
packet.decoded.emoji = 0;
return packet;
}

View File

@ -0,0 +1,51 @@
#include "test_helpers.h"
#include <Arduino.h>
#include <unity.h>
// Forward declarations for test functions
void test_text_message_serialization();
void test_position_serialization();
void test_nodeinfo_serialization();
void test_waypoint_serialization();
void test_telemetry_device_metrics_serialization();
void test_telemetry_environment_metrics_serialization();
void test_telemetry_environment_metrics_comprehensive();
void test_telemetry_environment_metrics_missing_fields();
void test_telemetry_environment_metrics_complete_coverage();
void test_telemetry_environment_metrics_unset_fields();
void test_encrypted_packet_serialization();
void setup()
{
UNITY_BEGIN();
// Text message tests
RUN_TEST(test_text_message_serialization);
// Position tests
RUN_TEST(test_position_serialization);
// Nodeinfo tests
RUN_TEST(test_nodeinfo_serialization);
// Waypoint tests
RUN_TEST(test_waypoint_serialization);
// Telemetry tests
RUN_TEST(test_telemetry_device_metrics_serialization);
RUN_TEST(test_telemetry_environment_metrics_serialization);
RUN_TEST(test_telemetry_environment_metrics_comprehensive);
RUN_TEST(test_telemetry_environment_metrics_missing_fields);
RUN_TEST(test_telemetry_environment_metrics_complete_coverage);
RUN_TEST(test_telemetry_environment_metrics_unset_fields);
// Encrypted packet test
RUN_TEST(test_encrypted_packet_serialization);
UNITY_END();
}
void loop()
{
delay(1000);
}

View File

@ -23,6 +23,7 @@
// "USERPREFS_CONFIG_OWNER_SHORT_NAME": "MLN",
// "USERPREFS_CONFIG_DEVICE_ROLE": "meshtastic_Config_DeviceConfig_Role_CLIENT", // Defaults to CLIENT. ROUTER*, LOST AND FOUND, and REPEATER roles are restricted.
// "USERPREFS_EVENT_MODE": "1",
// "USERPREFS_FIRMWARE_EDITION": "meshtastic_FirmwareEdition_BURNING_MAN",
// "USERPREFS_FIXED_BLUETOOTH": "121212",
// "USERPREFS_FIXED_GPS": "",
// "USERPREFS_FIXED_GPS_ALT": "0",