#ifndef PI_HAL_H #define PI_HAL_H // include RadioLib #include // include the library for Raspberry GPIO pins #include "pigpio.h" // create a new Raspberry Pi hardware abstraction layer // using the pigpio library // the HAL must inherit from the base RadioLibHal class // and implement all of its virtual methods class PiHal : public RadioLibHal { public: // default constructor - initializes the base HAL and any needed private members PiHal(uint8_t spiChannel, uint32_t spiSpeed = 2000000) : RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE), _spiChannel(spiChannel), _spiSpeed(spiSpeed) { } void init() override { // first initialise pigpio library gpioInitialise(); // now the SPI spiBegin(); // Waveshare LoRaWAN Hat also needs pin 18 to be pulled high to enable the radio // gpioSetMode(18, PI_OUTPUT); // gpioWrite(18, PI_HIGH); } void term() override { // stop the SPI spiEnd(); // pull the enable pin low // gpioSetMode(18, PI_OUTPUT); // gpioWrite(18, PI_LOW); // finally, stop the pigpio library gpioTerminate(); } // GPIO-related methods (pinMode, digitalWrite etc.) should check // RADIOLIB_NC as an alias for non-connected pins void pinMode(uint32_t pin, uint32_t mode) override { if (pin == RADIOLIB_NC) { return; } gpioSetMode(pin, mode); } void digitalWrite(uint32_t pin, uint32_t value) override { if (pin == RADIOLIB_NC) { return; } gpioWrite(pin, value); } uint32_t digitalRead(uint32_t pin) override { if (pin == RADIOLIB_NC) { return (0); } return (gpioRead(pin)); } void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override { if (interruptNum == RADIOLIB_NC) { return; } if (gpioRead(interruptNum) == 1) { interruptCb(); } else { gpioSetAlertFunc(interruptNum, (gpioISRFunc_t)interruptCb); } } void detachInterrupt(uint32_t interruptNum) override { if (interruptNum == RADIOLIB_NC) { return; } gpioSetAlertFunc(interruptNum, NULL); } void delay(unsigned long ms) override { gpioDelay(ms * 1000); } void delayMicroseconds(unsigned long us) override { gpioDelay(us); } unsigned long millis() override { return (gpioTick() / 1000); } unsigned long micros() override { return (gpioTick()); } long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override { if (pin == RADIOLIB_NC) { return (0); } this->pinMode(pin, PI_INPUT); uint32_t start = this->micros(); uint32_t curtick = this->micros(); while (this->digitalRead(pin) == state) { if ((this->micros() - curtick) > timeout) { return (0); } } return (this->micros() - start); } void spiBegin() { if (_spiHandle < 0) { _spiHandle = spiOpen(_spiChannel, _spiSpeed, 0); } } void spiBeginTransaction() {} void spiTransfer(uint8_t *out, size_t len, uint8_t *in) { spiXfer(_spiHandle, (char *)out, (char *)in, len); } void spiEndTransaction() {} void spiEnd() { if (_spiHandle >= 0) { spiClose(_spiHandle); _spiHandle = -1; } } private: // the HAL can contain any additional private members const unsigned int _spiSpeed; const uint8_t _spiChannel; int _spiHandle = -1; }; #endif