#include "../test_helpers.h" // Helper function to create and encode device metrics static size_t encode_telemetry_device_metrics(uint8_t *buffer, size_t buffer_size) { meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero; telemetry.time = 1609459200; telemetry.which_variant = meshtastic_Telemetry_device_metrics_tag; telemetry.variant.device_metrics.battery_level = 85; telemetry.variant.device_metrics.has_battery_level = true; telemetry.variant.device_metrics.voltage = 3.72f; telemetry.variant.device_metrics.has_voltage = true; telemetry.variant.device_metrics.channel_utilization = 15.56f; telemetry.variant.device_metrics.has_channel_utilization = true; telemetry.variant.device_metrics.air_util_tx = 8.23f; telemetry.variant.device_metrics.has_air_util_tx = true; telemetry.variant.device_metrics.uptime_seconds = 12345; telemetry.variant.device_metrics.has_uptime_seconds = true; pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size); pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry); return stream.bytes_written; } // Helper function to create and encode empty environment metrics (no fields set) static size_t encode_telemetry_environment_metrics_empty(uint8_t *buffer, size_t buffer_size) { meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero; telemetry.time = 1609459200; telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag; // NO fields are set - all has_* flags remain false // This tests that empty environment metrics don't produce any JSON fields pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size); pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry); return stream.bytes_written; } // Helper function to create environment metrics with ALL possible fields set // This function should be updated whenever new fields are added to the protobuf static size_t encode_telemetry_environment_metrics_all_fields(uint8_t *buffer, size_t buffer_size) { meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero; telemetry.time = 1609459200; telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag; // Basic environment metrics telemetry.variant.environment_metrics.temperature = 23.56f; telemetry.variant.environment_metrics.has_temperature = true; telemetry.variant.environment_metrics.relative_humidity = 65.43f; telemetry.variant.environment_metrics.has_relative_humidity = true; telemetry.variant.environment_metrics.barometric_pressure = 1013.27f; telemetry.variant.environment_metrics.has_barometric_pressure = true; // Gas and air quality telemetry.variant.environment_metrics.gas_resistance = 50.58f; telemetry.variant.environment_metrics.has_gas_resistance = true; telemetry.variant.environment_metrics.iaq = 120; telemetry.variant.environment_metrics.has_iaq = true; // Power measurements telemetry.variant.environment_metrics.voltage = 3.34f; telemetry.variant.environment_metrics.has_voltage = true; telemetry.variant.environment_metrics.current = 0.53f; telemetry.variant.environment_metrics.has_current = true; // Light measurements (ALL 4 types) telemetry.variant.environment_metrics.lux = 450.12f; telemetry.variant.environment_metrics.has_lux = true; telemetry.variant.environment_metrics.white_lux = 380.95f; telemetry.variant.environment_metrics.has_white_lux = true; telemetry.variant.environment_metrics.ir_lux = 25.37f; telemetry.variant.environment_metrics.has_ir_lux = true; telemetry.variant.environment_metrics.uv_lux = 15.68f; telemetry.variant.environment_metrics.has_uv_lux = true; // Distance measurement telemetry.variant.environment_metrics.distance = 150.29f; telemetry.variant.environment_metrics.has_distance = true; // Wind measurements (ALL 4 types) telemetry.variant.environment_metrics.wind_direction = 180; telemetry.variant.environment_metrics.has_wind_direction = true; telemetry.variant.environment_metrics.wind_speed = 5.52f; telemetry.variant.environment_metrics.has_wind_speed = true; telemetry.variant.environment_metrics.wind_gust = 8.24f; telemetry.variant.environment_metrics.has_wind_gust = true; telemetry.variant.environment_metrics.wind_lull = 2.13f; telemetry.variant.environment_metrics.has_wind_lull = true; // Weight measurement telemetry.variant.environment_metrics.weight = 75.56f; telemetry.variant.environment_metrics.has_weight = true; // Radiation measurement telemetry.variant.environment_metrics.radiation = 0.13f; telemetry.variant.environment_metrics.has_radiation = true; // Rainfall measurements (BOTH types) telemetry.variant.environment_metrics.rainfall_1h = 2.57f; telemetry.variant.environment_metrics.has_rainfall_1h = true; telemetry.variant.environment_metrics.rainfall_24h = 15.89f; telemetry.variant.environment_metrics.has_rainfall_24h = true; // Soil measurements (BOTH types) telemetry.variant.environment_metrics.soil_moisture = 85; telemetry.variant.environment_metrics.has_soil_moisture = true; telemetry.variant.environment_metrics.soil_temperature = 18.54f; telemetry.variant.environment_metrics.has_soil_temperature = true; // IMPORTANT: When new environment fields are added to the protobuf, // they MUST be added here too, or the coverage test will fail! pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size); pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry); return stream.bytes_written; } // Helper function to create and encode environment metrics with all current fields static size_t encode_telemetry_environment_metrics(uint8_t *buffer, size_t buffer_size) { meshtastic_Telemetry telemetry = meshtastic_Telemetry_init_zero; telemetry.time = 1609459200; telemetry.which_variant = meshtastic_Telemetry_environment_metrics_tag; // Basic environment metrics telemetry.variant.environment_metrics.temperature = 23.56f; telemetry.variant.environment_metrics.has_temperature = true; telemetry.variant.environment_metrics.relative_humidity = 65.43f; telemetry.variant.environment_metrics.has_relative_humidity = true; telemetry.variant.environment_metrics.barometric_pressure = 1013.27f; telemetry.variant.environment_metrics.has_barometric_pressure = true; // Gas and air quality telemetry.variant.environment_metrics.gas_resistance = 50.58f; telemetry.variant.environment_metrics.has_gas_resistance = true; telemetry.variant.environment_metrics.iaq = 120; telemetry.variant.environment_metrics.has_iaq = true; // Power measurements telemetry.variant.environment_metrics.voltage = 3.34f; telemetry.variant.environment_metrics.has_voltage = true; telemetry.variant.environment_metrics.current = 0.53f; telemetry.variant.environment_metrics.has_current = true; // Light measurements telemetry.variant.environment_metrics.lux = 450.12f; telemetry.variant.environment_metrics.has_lux = true; telemetry.variant.environment_metrics.white_lux = 380.95f; telemetry.variant.environment_metrics.has_white_lux = true; telemetry.variant.environment_metrics.ir_lux = 25.37f; telemetry.variant.environment_metrics.has_ir_lux = true; telemetry.variant.environment_metrics.uv_lux = 15.68f; telemetry.variant.environment_metrics.has_uv_lux = true; // Distance measurement telemetry.variant.environment_metrics.distance = 150.29f; telemetry.variant.environment_metrics.has_distance = true; // Wind measurements telemetry.variant.environment_metrics.wind_direction = 180; telemetry.variant.environment_metrics.has_wind_direction = true; telemetry.variant.environment_metrics.wind_speed = 5.52f; telemetry.variant.environment_metrics.has_wind_speed = true; telemetry.variant.environment_metrics.wind_gust = 8.24f; telemetry.variant.environment_metrics.has_wind_gust = true; telemetry.variant.environment_metrics.wind_lull = 2.13f; telemetry.variant.environment_metrics.has_wind_lull = true; // Weight measurement telemetry.variant.environment_metrics.weight = 75.56f; telemetry.variant.environment_metrics.has_weight = true; // Radiation measurement telemetry.variant.environment_metrics.radiation = 0.13f; telemetry.variant.environment_metrics.has_radiation = true; // Rainfall measurements telemetry.variant.environment_metrics.rainfall_1h = 2.57f; telemetry.variant.environment_metrics.has_rainfall_1h = true; telemetry.variant.environment_metrics.rainfall_24h = 15.89f; telemetry.variant.environment_metrics.has_rainfall_24h = true; // Soil measurements telemetry.variant.environment_metrics.soil_moisture = 85; telemetry.variant.environment_metrics.has_soil_moisture = true; telemetry.variant.environment_metrics.soil_temperature = 18.54f; telemetry.variant.environment_metrics.has_soil_temperature = true; pb_ostream_t stream = pb_ostream_from_buffer(buffer, buffer_size); pb_encode(&stream, &meshtastic_Telemetry_msg, &telemetry); return stream.bytes_written; } // Test TELEMETRY_APP port with device metrics void test_telemetry_device_metrics_serialization() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_device_metrics(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check message type TEST_ASSERT_TRUE(jsonObj.find("type") != jsonObj.end()); TEST_ASSERT_EQUAL_STRING("telemetry", jsonObj["type"]->AsString().c_str()); // Check payload TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // Verify telemetry data TEST_ASSERT_TRUE(payload.find("battery_level") != payload.end()); TEST_ASSERT_EQUAL(85, (int)payload["battery_level"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("voltage") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 3.72f, payload["voltage"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("channel_utilization") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.56f, payload["channel_utilization"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("uptime_seconds") != payload.end()); TEST_ASSERT_EQUAL(12345, (int)payload["uptime_seconds"]->AsNumber()); // Note: JSON serialization may not preserve exact 2-decimal formatting due to float precision // We verify the numeric values are correct within tolerance delete root; } // Test that telemetry environment metrics are properly serialized void test_telemetry_environment_metrics_serialization() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check payload exists TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // Test key fields that should be present in the serializer TEST_ASSERT_TRUE(payload.find("temperature") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 23.56f, payload["temperature"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 65.43f, payload["relative_humidity"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("distance") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 150.29f, payload["distance"]->AsNumber()); // Note: JSON serialization may have float precision limitations // We focus on verifying numeric accuracy rather than exact string formatting delete root; } // Test comprehensive environment metrics coverage void test_telemetry_environment_metrics_comprehensive() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check payload exists TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // Check all 15 originally supported fields TEST_ASSERT_TRUE(payload.find("temperature") != payload.end()); TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end()); TEST_ASSERT_TRUE(payload.find("barometric_pressure") != payload.end()); TEST_ASSERT_TRUE(payload.find("gas_resistance") != payload.end()); TEST_ASSERT_TRUE(payload.find("voltage") != payload.end()); TEST_ASSERT_TRUE(payload.find("current") != payload.end()); TEST_ASSERT_TRUE(payload.find("iaq") != payload.end()); TEST_ASSERT_TRUE(payload.find("distance") != payload.end()); TEST_ASSERT_TRUE(payload.find("lux") != payload.end()); TEST_ASSERT_TRUE(payload.find("white_lux") != payload.end()); TEST_ASSERT_TRUE(payload.find("wind_direction") != payload.end()); TEST_ASSERT_TRUE(payload.find("wind_speed") != payload.end()); TEST_ASSERT_TRUE(payload.find("wind_gust") != payload.end()); TEST_ASSERT_TRUE(payload.find("wind_lull") != payload.end()); TEST_ASSERT_TRUE(payload.find("radiation") != payload.end()); delete root; } // Test for the 7 environment fields that were added to complete coverage void test_telemetry_environment_metrics_missing_fields() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_environment_metrics(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check payload exists TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // Check the 7 fields that were previously missing TEST_ASSERT_TRUE(payload.find("ir_lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 25.37f, payload["ir_lux"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("uv_lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.68f, payload["uv_lux"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("weight") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 75.56f, payload["weight"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("rainfall_1h") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.57f, payload["rainfall_1h"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("rainfall_24h") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.89f, payload["rainfall_24h"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("soil_moisture") != payload.end()); TEST_ASSERT_EQUAL(85, (int)payload["soil_moisture"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("soil_temperature") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 18.54f, payload["soil_temperature"]->AsNumber()); // Note: JSON float serialization may not preserve exact decimal formatting // We verify the values are numerically correct within tolerance delete root; } // Test that ALL environment fields are serialized (canary test for forgotten fields) // This test will FAIL if a new environment field is added to the protobuf but not to the serializer void test_telemetry_environment_metrics_complete_coverage() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_environment_metrics_all_fields(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check payload exists TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // ✅ ALL 22 environment fields MUST be present and correct // If this test fails, it means either: // 1. A new field was added to the protobuf but not to the serializer // 2. The encode_telemetry_environment_metrics_all_fields() function wasn't updated // Basic environment (3 fields) TEST_ASSERT_TRUE(payload.find("temperature") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 23.56f, payload["temperature"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("relative_humidity") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 65.43f, payload["relative_humidity"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("barometric_pressure") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 1013.27f, payload["barometric_pressure"]->AsNumber()); // Gas and air quality (2 fields) TEST_ASSERT_TRUE(payload.find("gas_resistance") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 50.58f, payload["gas_resistance"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("iaq") != payload.end()); TEST_ASSERT_EQUAL(120, (int)payload["iaq"]->AsNumber()); // Power measurements (2 fields) TEST_ASSERT_TRUE(payload.find("voltage") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 3.34f, payload["voltage"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("current") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 0.53f, payload["current"]->AsNumber()); // Light measurements (4 fields) TEST_ASSERT_TRUE(payload.find("lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 450.12f, payload["lux"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("white_lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 380.95f, payload["white_lux"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("ir_lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 25.37f, payload["ir_lux"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("uv_lux") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.68f, payload["uv_lux"]->AsNumber()); // Distance measurement (1 field) TEST_ASSERT_TRUE(payload.find("distance") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 150.29f, payload["distance"]->AsNumber()); // Wind measurements (4 fields) TEST_ASSERT_TRUE(payload.find("wind_direction") != payload.end()); TEST_ASSERT_EQUAL(180, (int)payload["wind_direction"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("wind_speed") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 5.52f, payload["wind_speed"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("wind_gust") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 8.24f, payload["wind_gust"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("wind_lull") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.13f, payload["wind_lull"]->AsNumber()); // Weight measurement (1 field) TEST_ASSERT_TRUE(payload.find("weight") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 75.56f, payload["weight"]->AsNumber()); // Radiation measurement (1 field) TEST_ASSERT_TRUE(payload.find("radiation") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 0.13f, payload["radiation"]->AsNumber()); // Rainfall measurements (2 fields) TEST_ASSERT_TRUE(payload.find("rainfall_1h") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 2.57f, payload["rainfall_1h"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("rainfall_24h") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 15.89f, payload["rainfall_24h"]->AsNumber()); // Soil measurements (2 fields) TEST_ASSERT_TRUE(payload.find("soil_moisture") != payload.end()); TEST_ASSERT_EQUAL(85, (int)payload["soil_moisture"]->AsNumber()); TEST_ASSERT_TRUE(payload.find("soil_temperature") != payload.end()); TEST_ASSERT_FLOAT_WITHIN(0.01f, 18.54f, payload["soil_temperature"]->AsNumber()); // Total: 22 environment fields // This test ensures 100% coverage of environment metrics // Note: JSON float serialization precision may vary due to the underlying library // The important aspect is that all values are numerically accurate within tolerance delete root; } // Test that unset environment fields are not present in JSON void test_telemetry_environment_metrics_unset_fields() { uint8_t buffer[256]; size_t payload_size = encode_telemetry_environment_metrics_empty(buffer, sizeof(buffer)); meshtastic_MeshPacket packet = create_test_packet(meshtastic_PortNum_TELEMETRY_APP, buffer, payload_size); std::string json = MeshPacketSerializer::JsonSerialize(&packet, false); TEST_ASSERT_TRUE(json.length() > 0); JSONValue *root = JSON::Parse(json.c_str()); TEST_ASSERT_NOT_NULL(root); TEST_ASSERT_TRUE(root->IsObject()); JSONObject jsonObj = root->AsObject(); // Check payload exists TEST_ASSERT_TRUE(jsonObj.find("payload") != jsonObj.end()); TEST_ASSERT_TRUE(jsonObj["payload"]->IsObject()); JSONObject payload = jsonObj["payload"]->AsObject(); // With completely empty environment metrics, NO fields should be present // Only basic telemetry fields like "time" might be present // All 22 environment fields should be absent (none were set) TEST_ASSERT_TRUE(payload.find("temperature") == payload.end()); TEST_ASSERT_TRUE(payload.find("relative_humidity") == payload.end()); TEST_ASSERT_TRUE(payload.find("barometric_pressure") == payload.end()); TEST_ASSERT_TRUE(payload.find("gas_resistance") == payload.end()); TEST_ASSERT_TRUE(payload.find("iaq") == payload.end()); TEST_ASSERT_TRUE(payload.find("voltage") == payload.end()); TEST_ASSERT_TRUE(payload.find("current") == payload.end()); TEST_ASSERT_TRUE(payload.find("lux") == payload.end()); TEST_ASSERT_TRUE(payload.find("white_lux") == payload.end()); TEST_ASSERT_TRUE(payload.find("ir_lux") == payload.end()); TEST_ASSERT_TRUE(payload.find("uv_lux") == payload.end()); TEST_ASSERT_TRUE(payload.find("distance") == payload.end()); TEST_ASSERT_TRUE(payload.find("wind_direction") == payload.end()); TEST_ASSERT_TRUE(payload.find("wind_speed") == payload.end()); TEST_ASSERT_TRUE(payload.find("wind_gust") == payload.end()); TEST_ASSERT_TRUE(payload.find("wind_lull") == payload.end()); TEST_ASSERT_TRUE(payload.find("weight") == payload.end()); TEST_ASSERT_TRUE(payload.find("radiation") == payload.end()); TEST_ASSERT_TRUE(payload.find("rainfall_1h") == payload.end()); TEST_ASSERT_TRUE(payload.find("rainfall_24h") == payload.end()); TEST_ASSERT_TRUE(payload.find("soil_moisture") == payload.end()); TEST_ASSERT_TRUE(payload.find("soil_temperature") == payload.end()); delete root; }