firmware/src/mesh/RF95Interface.cpp
Tom Fifield 103ab0c242
Cleanup - remove unused defines. (#4353)
* Cleanup - remove unused defines.

There were a number of defined variables that were carried over
from old code. - Removed.
Also a typo. - Fixed fix.
Also duplicate definitions of the number of seconds in a day.
-deduplicated.

* Cleanup - remove unused defines.

There were a number of defined variables that were carried over
from old code. - Removed.
Also a typo. - Fixed fix.
Also duplicate definitions of the number of seconds in a day.
-deduplicated.

---------

Co-authored-by: Ben Meadors <benmmeadors@gmail.com>
2024-07-31 06:56:06 -05:00

323 lines
9.2 KiB
C++

#include "RF95Interface.h"
#include "MeshRadio.h" // kinda yucky, but we need to know which region we are in
#include "RadioLibRF95.h"
#include "configuration.h"
#include "error.h"
#if ARCH_PORTDUINO
#include "PortduinoGlue.h"
#endif
#ifndef RF95_MAX_POWER
#define RF95_MAX_POWER 20
#endif
// if we use 20 we are limited to 1% duty cycle or hw might overheat. For continuous operation set a limit of 17
// In theory up to 27 dBm is possible, but the modules installed in most radios can cope with a max of 20. So BIG WARNING
// if you set power to something higher than 17 or 20 you might fry your board.
#ifdef RADIOMASTER_900_BANDIT_NANO
// Structure to hold DAC and DB values
typedef struct {
uint8_t dac;
uint8_t db;
} DACDB;
// Interpolation function
DACDB interpolate(uint8_t dbm, uint8_t dbm1, uint8_t dbm2, DACDB val1, DACDB val2)
{
DACDB result;
double fraction = (double)(dbm - dbm1) / (dbm2 - dbm1);
result.dac = (uint8_t)(val1.dac + fraction * (val2.dac - val1.dac));
result.db = (uint8_t)(val1.db + fraction * (val2.db - val1.db));
return result;
}
// Function to find the correct DAC and DB values based on dBm using interpolation
DACDB getDACandDB(uint8_t dbm)
{
// Predefined values
static const struct {
uint8_t dbm;
DACDB values;
} dbmToDACDB[] = {
{20, {168, 2}}, // 100mW
{24, {148, 6}}, // 250mW
{27, {128, 9}}, // 500mW
{30, {90, 12}} // 1000mW
};
const int numValues = sizeof(dbmToDACDB) / sizeof(dbmToDACDB[0]);
// Find the interval dbm falls within and interpolate
for (int i = 0; i < numValues - 1; i++) {
if (dbm >= dbmToDACDB[i].dbm && dbm <= dbmToDACDB[i + 1].dbm) {
return interpolate(dbm, dbmToDACDB[i].dbm, dbmToDACDB[i + 1].dbm, dbmToDACDB[i].values, dbmToDACDB[i + 1].values);
}
}
// Return a default value if no match is found and default to 100mW
DACDB defaultValue = {168, 2};
return defaultValue;
}
#endif
RF95Interface::RF95Interface(LockingArduinoHal *hal, RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst,
RADIOLIB_PIN_TYPE busy)
: RadioLibInterface(hal, cs, irq, rst, busy)
{
LOG_DEBUG("RF95Interface(cs=%d, irq=%d, rst=%d, busy=%d)\n", cs, irq, rst, busy);
}
/** Some boards require GPIO control of tx vs rx paths */
void RF95Interface::setTransmitEnable(bool txon)
{
#ifdef RF95_TXEN
digitalWrite(RF95_TXEN, txon ? 1 : 0);
#elif ARCH_PORTDUINO
if (settingsMap[txen] != RADIOLIB_NC) {
digitalWrite(settingsMap[txen], txon ? 1 : 0);
}
#endif
#ifdef RF95_RXEN
digitalWrite(RF95_RXEN, txon ? 0 : 1);
#elif ARCH_PORTDUINO
if (settingsMap[rxen] != RADIOLIB_NC) {
digitalWrite(settingsMap[rxen], txon ? 0 : 1);
}
#endif
}
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
bool RF95Interface::init()
{
RadioLibInterface::init();
#ifdef RADIOMASTER_900_BANDIT_NANO
// DAC and DB values based on dBm using interpolation
DACDB dacDbValues = getDACandDB(power);
int8_t powerDAC = dacDbValues.dac;
power = dacDbValues.db;
#endif
if (power > RF95_MAX_POWER) // This chip has lower power limits than some
power = RF95_MAX_POWER;
limitPower();
iface = lora = new RadioLibRF95(&module);
#ifdef RF95_TCXO
pinMode(RF95_TCXO, OUTPUT);
digitalWrite(RF95_TCXO, 1);
#endif
// enable PA
#ifdef RF95_PA_EN
#if defined(RF95_PA_DAC_EN)
#ifdef RADIOMASTER_900_BANDIT_NANO
// Use calculated DAC value
dacWrite(RF95_PA_EN, powerDAC);
#else
// Use Value set in /*/variant.h
dacWrite(RF95_PA_EN, RF95_PA_LEVEL);
#endif
#endif
#endif
/*
#define RF95_TXEN (22) // If defined, this pin should be set high prior to transmit (controls an external analog switch)
#define RF95_RXEN (23) // If defined, this pin should be set high prior to receive (controls an external analog switch)
*/
#ifdef RF95_TXEN
pinMode(RF95_TXEN, OUTPUT);
digitalWrite(RF95_TXEN, 0);
#endif
#ifdef RF95_FAN_EN
pinMode(RF95_FAN_EN, OUTPUT);
digitalWrite(RF95_FAN_EN, 1);
#endif
#ifdef RF95_RXEN
pinMode(RF95_RXEN, OUTPUT);
digitalWrite(RF95_RXEN, 1);
#endif
#if ARCH_PORTDUINO
if (settingsMap[txen] != RADIOLIB_NC) {
pinMode(settingsMap[txen], OUTPUT);
digitalWrite(settingsMap[txen], 0);
}
if (settingsMap[rxen] != RADIOLIB_NC) {
pinMode(settingsMap[rxen], OUTPUT);
digitalWrite(settingsMap[rxen], 0);
}
#endif
setTransmitEnable(false);
int res = lora->begin(getFreq(), bw, sf, cr, syncWord, power, preambleLength);
LOG_INFO("RF95 init result %d\n", res);
LOG_INFO("Frequency set to %f\n", getFreq());
LOG_INFO("Bandwidth set to %f\n", bw);
LOG_INFO("Power output set to %d\n", power);
#ifdef RADIOMASTER_900_BANDIT_NANO
LOG_INFO("DAC output set to %d\n", powerDAC);
#endif
if (res == RADIOLIB_ERR_NONE)
res = lora->setCRC(RADIOLIB_SX126X_LORA_CRC_ON);
if (res == RADIOLIB_ERR_NONE)
startReceive(); // start receiving
return res == RADIOLIB_ERR_NONE;
}
void INTERRUPT_ATTR RF95Interface::disableInterrupt()
{
lora->clearDio0Action();
}
bool RF95Interface::reconfigure()
{
RadioLibInterface::reconfigure();
// set mode to standby
setStandby();
// configure publicly accessible settings
int err = lora->setSpreadingFactor(sf);
if (err != RADIOLIB_ERR_NONE)
RECORD_CRITICALERROR(meshtastic_CriticalErrorCode_INVALID_RADIO_SETTING);
err = lora->setBandwidth(bw);
if (err != RADIOLIB_ERR_NONE)
RECORD_CRITICALERROR(meshtastic_CriticalErrorCode_INVALID_RADIO_SETTING);
err = lora->setCodingRate(cr);
if (err != RADIOLIB_ERR_NONE)
RECORD_CRITICALERROR(meshtastic_CriticalErrorCode_INVALID_RADIO_SETTING);
err = lora->setSyncWord(syncWord);
if (err != RADIOLIB_ERR_NONE)
LOG_ERROR("Radiolib error %d when attempting RF95 setSyncWord!\n", err);
assert(err == RADIOLIB_ERR_NONE);
err = lora->setCurrentLimit(currentLimit);
if (err != RADIOLIB_ERR_NONE)
LOG_ERROR("Radiolib error %d when attempting RF95 setCurrentLimit!\n", err);
assert(err == RADIOLIB_ERR_NONE);
err = lora->setPreambleLength(preambleLength);
if (err != RADIOLIB_ERR_NONE)
LOG_ERROR("Radiolib error %d when attempting RF95 setPreambleLength!\n", err);
assert(err == RADIOLIB_ERR_NONE);
err = lora->setFrequency(getFreq());
if (err != RADIOLIB_ERR_NONE)
RECORD_CRITICALERROR(meshtastic_CriticalErrorCode_INVALID_RADIO_SETTING);
if (power > RF95_MAX_POWER) // This chip has lower power limits than some
power = RF95_MAX_POWER;
#ifdef USE_RF95_RFO
err = lora->setOutputPower(power, true);
#else
err = lora->setOutputPower(power);
#endif
if (err != RADIOLIB_ERR_NONE)
RECORD_CRITICALERROR(meshtastic_CriticalErrorCode_INVALID_RADIO_SETTING);
startReceive(); // restart receiving
return RADIOLIB_ERR_NONE;
}
/**
* Add SNR data to received messages
*/
void RF95Interface::addReceiveMetadata(meshtastic_MeshPacket *mp)
{
mp->rx_snr = lora->getSNR();
mp->rx_rssi = lround(lora->getRSSI());
}
void RF95Interface::setStandby()
{
int err = lora->standby();
if (err != RADIOLIB_ERR_NONE)
LOG_ERROR("Radiolib error %d when attempting RF95 standby!\n", err);
assert(err == RADIOLIB_ERR_NONE);
isReceiving = false; // If we were receiving, not any more
disableInterrupt();
completeSending(); // If we were sending, not anymore
RadioLibInterface::setStandby();
}
/** We override to turn on transmitter power as needed.
*/
void RF95Interface::configHardwareForSend()
{
setTransmitEnable(true);
RadioLibInterface::configHardwareForSend();
}
void RF95Interface::startReceive()
{
setTransmitEnable(false);
setStandby();
int err = lora->startReceive();
if (err != RADIOLIB_ERR_NONE)
LOG_ERROR("Radiolib error %d when attempting RF95 startReceive!\n", err);
assert(err == RADIOLIB_ERR_NONE);
isReceiving = true;
// Must be done AFTER, starting receive, because startReceive clears (possibly stale) interrupt pending register bits
enableInterrupt(isrRxLevel0);
}
bool RF95Interface::isChannelActive()
{
// check if we can detect a LoRa preamble on the current channel
int16_t result;
setTransmitEnable(false);
setStandby(); // needed for smooth transition
result = lora->scanChannel();
if (result == RADIOLIB_PREAMBLE_DETECTED) {
// LOG_DEBUG("Channel is busy!\n");
return true;
}
if (result != RADIOLIB_CHANNEL_FREE)
LOG_ERROR("Radiolib error %d when attempting RF95 isChannelActive!\n", result);
assert(result != RADIOLIB_ERR_WRONG_MODEM);
// LOG_DEBUG("Channel is free!\n");
return false;
}
/** Could we send right now (i.e. either not actively receiving or transmitting)? */
bool RF95Interface::isActivelyReceiving()
{
return lora->isReceiving();
}
bool RF95Interface::sleep()
{
// put chipset into sleep mode
setStandby(); // First cancel any active receiving/sending
lora->sleep();
#ifdef RF95_FAN_EN
digitalWrite(RF95_FAN_EN, 0);
#endif
return true;
}