firmware/src/gps/RTC.cpp
Ben Meadors 70724bef72
Some checks are pending
CI / setup (check) (push) Waiting to run
CI / setup (esp32) (push) Waiting to run
CI / setup (esp32c3) (push) Waiting to run
CI / setup (esp32c6) (push) Waiting to run
CI / setup (esp32s3) (push) Waiting to run
CI / setup (nrf52840) (push) Waiting to run
CI / setup (rp2040) (push) Waiting to run
CI / setup (rp2350) (push) Waiting to run
CI / setup (stm32) (push) Waiting to run
CI / version (push) Waiting to run
CI / check (push) Blocked by required conditions
CI / build-esp32 (push) Blocked by required conditions
CI / build-esp32s3 (push) Blocked by required conditions
CI / build-esp32c3 (push) Blocked by required conditions
CI / build-esp32c6 (push) Blocked by required conditions
CI / build-nrf52840 (push) Blocked by required conditions
CI / build-rp2040 (push) Blocked by required conditions
CI / build-rp2350 (push) Blocked by required conditions
CI / build-stm32 (push) Blocked by required conditions
CI / build-debian-src (push) Waiting to run
CI / package-pio-deps-native-tft (push) Waiting to run
CI / test-native (push) Waiting to run
CI / docker-deb-amd64 (push) Waiting to run
CI / docker-deb-amd64-tft (push) Waiting to run
CI / docker-alp-amd64 (push) Waiting to run
CI / docker-alp-amd64-tft (push) Waiting to run
CI / docker-deb-arm64 (push) Waiting to run
CI / docker-deb-armv7 (push) Waiting to run
CI / gather-artifacts (esp32) (push) Blocked by required conditions
CI / gather-artifacts (esp32c3) (push) Blocked by required conditions
CI / gather-artifacts (esp32c6) (push) Blocked by required conditions
CI / gather-artifacts (esp32s3) (push) Blocked by required conditions
CI / gather-artifacts (nrf52840) (push) Blocked by required conditions
CI / gather-artifacts (rp2040) (push) Blocked by required conditions
CI / gather-artifacts (rp2350) (push) Blocked by required conditions
CI / gather-artifacts (stm32) (push) Blocked by required conditions
CI / release-artifacts (push) Blocked by required conditions
CI / release-firmware (esp32) (push) Blocked by required conditions
CI / release-firmware (esp32c3) (push) Blocked by required conditions
CI / release-firmware (esp32c6) (push) Blocked by required conditions
CI / release-firmware (esp32s3) (push) Blocked by required conditions
CI / release-firmware (nrf52840) (push) Blocked by required conditions
CI / release-firmware (rp2040) (push) Blocked by required conditions
CI / release-firmware (rp2350) (push) Blocked by required conditions
CI / release-firmware (stm32) (push) Blocked by required conditions
CI / publish-firmware (push) Blocked by required conditions
Fix overflow of time value (#7984)
* Fix overflow of time value

* Revert "Fix overflow of time value"

This reverts commit 0847969201.

* That got boogered up
2025-09-14 08:12:38 -05:00

383 lines
14 KiB
C++

#include "RTC.h"
#include "configuration.h"
#include "detect/ScanI2C.h"
#include "main.h"
#include <Throttle.h>
#include <sys/time.h>
#include <time.h>
static RTCQuality currentQuality = RTCQualityNone;
uint32_t lastSetFromPhoneNtpOrGps = 0;
static uint32_t lastTimeValidationWarning = 0;
static const uint32_t TIME_VALIDATION_WARNING_INTERVAL_MS = 15000; // 15 seconds
RTCQuality getRTCQuality()
{
return currentQuality;
}
// stuff that really should be in in the instance instead...
static uint32_t
timeStartMsec; // Once we have a GPS lock, this is where we hold the initial msec clock that corresponds to that time
static uint64_t zeroOffsetSecs; // GPS based time in secs since 1970 - only updated once on initial lock
/**
* Reads the current date and time from the RTC module and updates the system time.
* @return True if the RTC was successfully read and the system time was updated, false otherwise.
*/
RTCSetResult readFromRTC()
{
struct timeval tv; /* btw settimeofday() is helpful here too*/
#ifdef RV3028_RTC
if (rtc_found.address == RV3028_RTC) {
uint32_t now = millis();
Melopero_RV3028 rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.initI2C();
#endif
tm t;
t.tm_year = rtc.getYear() - 1900;
t.tm_mon = rtc.getMonth() - 1;
t.tm_mday = rtc.getDate();
t.tm_hour = rtc.getHour();
t.tm_min = rtc.getMinute();
t.tm_sec = rtc.getSecond();
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
}
return RTCSetResultInvalidTime;
}
#endif
LOG_DEBUG("Read RTC time from RV3028 getTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1,
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
}
#elif defined(PCF8563_RTC)
if (rtc_found.address == PCF8563_RTC) {
uint32_t now = millis();
PCF8563_Class rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.begin();
#endif
auto tc = rtc.getDateTime();
tm t;
t.tm_year = tc.year - 1900;
t.tm_mon = tc.month - 1;
t.tm_mday = tc.day;
t.tm_hour = tc.hour;
t.tm_min = tc.minute;
t.tm_sec = tc.second;
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
LOG_DEBUG("Read RTC time from PCF8563 getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1,
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
}
#else
if (!gettimeofday(&tv, NULL)) {
uint32_t now = millis();
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
LOG_DEBUG("Read RTC time as %ld", printableEpoch);
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
return RTCSetResultSuccess;
}
#endif
return RTCSetResultNotSet;
}
/**
* Sets the RTC (Real-Time Clock) if the provided time is of higher quality than the current RTC time.
*
* @param q The quality of the provided time.
* @param tv A pointer to a timeval struct containing the time to potentially set the RTC to.
* @return RTCSetResult
*
* If we haven't yet set our RTC this boot, set it from a GPS derived time
*/
RTCSetResult perhapsSetRTC(RTCQuality q, const struct timeval *tv, bool forceUpdate)
{
static uint32_t lastSetMsec = 0;
uint32_t now = millis();
uint32_t printableEpoch = tv->tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv->tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv->tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch,
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
bool shouldSet;
if (forceUpdate) {
shouldSet = true;
LOG_DEBUG("Override current RTC quality (%s) with incoming time of RTC quality of %s", RtcName(currentQuality),
RtcName(q));
} else if (q > currentQuality) {
shouldSet = true;
LOG_DEBUG("Upgrade time to quality %s", RtcName(q));
} else if (q == RTCQualityGPS) {
shouldSet = true;
LOG_DEBUG("Reapply GPS time: %ld secs", printableEpoch);
} else if (q == RTCQualityNTP && !Throttle::isWithinTimespanMs(lastSetMsec, (12 * 60 * 60 * 1000UL))) {
// Every 12 hrs we will slam in a new NTP or Phone GPS / NTP time, to correct for local RTC clock drift
shouldSet = true;
LOG_DEBUG("Reapply external time to correct clock drift %ld secs", printableEpoch);
} else {
shouldSet = false;
LOG_DEBUG("Current RTC quality: %s. Ignore time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
}
if (shouldSet) {
currentQuality = q;
lastSetMsec = now;
if (currentQuality >= RTCQualityNTP) {
lastSetFromPhoneNtpOrGps = now;
}
// This delta value works on all platforms
timeStartMsec = now;
zeroOffsetSecs = tv->tv_sec;
// If this platform has a setable RTC, set it
#ifdef RV3028_RTC
if (rtc_found.address == RV3028_RTC) {
Melopero_RV3028 rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.initI2C();
#endif
tm *t = gmtime(&tv->tv_sec);
rtc.setTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_wday, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
LOG_DEBUG("RV3028_RTC setTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
}
#elif defined(PCF8563_RTC)
if (rtc_found.address == PCF8563_RTC) {
PCF8563_Class rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.begin();
#endif
tm *t = gmtime(&tv->tv_sec);
rtc.setDateTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
LOG_DEBUG("PCF8563_RTC setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
}
#elif defined(ARCH_ESP32)
settimeofday(tv, NULL);
#endif
// nrf52 doesn't have a readable RTC (yet - software not written)
#if HAS_RTC
readFromRTC();
#endif
return RTCSetResultSuccess;
} else {
return RTCSetResultNotSet; // RTC was already set with a higher quality time
}
}
const char *RtcName(RTCQuality quality)
{
switch (quality) {
case RTCQualityNone:
return "None";
case RTCQualityDevice:
return "Device";
case RTCQualityFromNet:
return "Net";
case RTCQualityNTP:
return "NTP";
case RTCQualityGPS:
return "GPS";
default:
return "Unknown";
}
}
/**
* Sets the RTC time if the provided time is of higher quality than the current RTC time.
*
* @param q The quality of the provided time.
* @param t The time to potentially set the RTC to.
* @return True if the RTC was set to the provided time, false otherwise.
*/
RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t)
{
/* Convert to unix time
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January 1, 1970
(midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
*/
// horrible hack to make mktime TZ agnostic - best practise according to
// https://www.gnu.org/software/libc/manual/html_node/Broken_002ddown-Time.html
time_t res = gm_mktime(&t);
struct timeval tv;
tv.tv_sec = res;
tv.tv_usec = 0; // time.centisecond() * (10 / 1000);
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv.tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch,
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
// LOG_DEBUG("Got time from GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
if (t.tm_year < 0 || t.tm_year >= 300) {
// LOG_DEBUG("Ignore invalid GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
return RTCSetResultInvalidTime;
} else {
return perhapsSetRTC(q, &tv);
}
}
/**
* Returns the timezone offset in seconds.
*
* @return The timezone offset in seconds.
*/
int32_t getTZOffset()
{
#if MESHTASTIC_EXCLUDE_TZ
return 0;
#else
time_t now = getTime(false);
struct tm *gmt;
gmt = gmtime(&now);
gmt->tm_isdst = -1;
return (int32_t)difftime(now, mktime(gmt));
#endif
}
/**
* Returns the current time in seconds since the Unix epoch (January 1, 1970).
*
* @return The current time in seconds since the Unix epoch.
*/
uint32_t getTime(bool local)
{
if (local) {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs + getTZOffset();
} else {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs;
}
}
/**
* Returns the current time from the RTC if the quality of the time is at least minQuality.
*
* @param minQuality The minimum quality of the RTC time required for it to be considered valid.
* @return The current time from the RTC if it meets the minimum quality requirement, or 0 if the time is not valid.
*/
uint32_t getValidTime(RTCQuality minQuality, bool local)
{
return (currentQuality >= minQuality) ? getTime(local) : 0;
}
time_t gm_mktime(struct tm *tm)
{
#if !MESHTASTIC_EXCLUDE_TZ
time_t result = 0;
// First, get us to the start of tm->year, by calcuating the number of days since the Unix epoch.
int year = 1900 + tm->tm_year; // tm_year is years since 1900
int year_minus_one = year - 1;
int days_before_this_year = 0;
days_before_this_year += year_minus_one * 365;
// leap days: every 4 years, except 100s, but including 400s.
days_before_this_year += year_minus_one / 4 - year_minus_one / 100 + year_minus_one / 400;
// subtract from 1970-01-01 to get days since epoch
days_before_this_year -= 719162; // (1969 * 365 + 1969 / 4 - 1969 / 100 + 1969 / 400);
// Now, within this tm->year, compute the days *before* this tm->month starts.
int days_before_month[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; // non-leap year
int days_this_year_before_this_month = days_before_month[tm->tm_mon]; // tm->tm_mon is 0..11
// If this is a leap year, and we're past February, add a day:
if (tm->tm_mon >= 2 && (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
days_this_year_before_this_month += 1;
}
// And within this month:
int days_this_month_before_today = tm->tm_mday - 1; // tm->tm_mday is 1..31
// Now combine them all together, and convert days to seconds:
result += (days_before_this_year + days_this_year_before_this_month + days_this_month_before_today);
result *= 86400L;
// Finally, add in the hours, minutes, and seconds of today:
result += tm->tm_hour * 3600;
result += tm->tm_min * 60;
result += tm->tm_sec;
return result;
#else
return mktime(tm);
#endif
}