firmware/src/graphics/niche/InkHUD/Applet.cpp
todd-herbert ba1ef45024
InkHUD Extended ASCII (#6768)
* Custom AdafruitGFX fonts with extended ASCII encodings

* AppletFont handles re-encoding of UTF-8 text

* Manual parsing of text which may contain non-ASCII chars

* Display emoji reactions, even when unprintable
Important to indicate to users that a message has been received, even if meaning is unclear.

* Superstitious shrink_to_fit
I don't think these help, but they're not hurting!

* Use Windows-1252 fonts by default

* Spelling

* Tidy up nicheGraphics.h

* Documentation

* Fix inverted logic
Slipped in during a last minute renaming while tidying up to push..
2025-05-22 18:16:53 -05:00

978 lines
32 KiB
C++

#ifdef MESHTASTIC_INCLUDE_INKHUD
#include "./Applet.h"
#include "main.h"
#include "RTC.h"
using namespace NicheGraphics;
InkHUD::AppletFont InkHUD::Applet::fontLarge; // General purpose font. Set by setDefaultFonts
InkHUD::AppletFont InkHUD::Applet::fontSmall; // General purpose font. Set by setDefaultFonts
constexpr float InkHUD::Applet::LOGO_ASPECT_RATIO; // Ratio of the Meshtastic logo
InkHUD::Applet::Applet() : GFX(0, 0)
{
// GFX is given initial dimensions of 0
// The width and height will change dynamically, depending on Applet tiling
// If you're getting a "divide by zero error", consider it an assert:
// WindowManager should be the only one controlling the rendering
inkhud = InkHUD::getInstance();
settings = &inkhud->persistence->settings;
latestMessage = &inkhud->persistence->latestMessage;
}
// Draw a single pixel
// The raw pixel output generated by AdafruitGFX drawing all passes through here
// Hand off to the applet's tile, which will in-turn pass to the renderer
void InkHUD::Applet::drawPixel(int16_t x, int16_t y, uint16_t color)
{
// Only render pixels if they fall within user's cropped region
if (x >= cropLeft && x < (cropLeft + cropWidth) && y >= cropTop && y < (cropTop + cropHeight))
assignedTile->handleAppletPixel(x, y, (Color)color);
}
// Link our applet to a tile
// This can only be called by Tile::assignApplet
// The tile determines the applets dimensions
// Pixel output is passed to tile during render()
void InkHUD::Applet::setTile(Tile *t)
{
// If we're setting (not clearing), make sure the link is "reciprocal"
if (t)
assert(t->getAssignedApplet() == this);
assignedTile = t;
}
// The tile to which our applet is assigned
InkHUD::Tile *InkHUD::Applet::getTile()
{
return assignedTile;
}
// Draw the applet
void InkHUD::Applet::render()
{
assert(assignedTile); // Ensure that we have a tile
assert(assignedTile->getAssignedApplet() == this); // Ensure that we have a reciprocal link with the tile
// WindowManager::update has now consumed the info about our update request
// Clear everything for future requests
wantRender = false; // Flag set by requestUpdate
wantAutoshow = false; // Flag set by requestAutoShow. May or may not have been honored.
wantUpdateType = Drivers::EInk::UpdateTypes::UNSPECIFIED; // Update type we wanted. May on may not have been granted.
updateDimensions();
resetDrawingSpace();
onRender(); // Derived applet's drawing takes place here
// Handle "Tile Highlighting"
// Some devices may use an auxiliary button to switch between tiles
// When this happens, we temporarily highlight the newly focused tile with a border
// If our tile is (or was) highlighted, to indicate a change in focus
if (Tile::highlightTarget == assignedTile) {
// Draw the highlight
if (!Tile::highlightShown) {
drawRect(0, 0, width(), height(), BLACK);
Tile::startHighlightTimeout();
Tile::highlightShown = true;
}
// Clear the highlight
else {
Tile::cancelHighlightTimeout();
Tile::highlightShown = false;
Tile::highlightTarget = nullptr;
}
}
}
// Does the applet want to render now?
// Checks whether the applet called requestUpdate recently, in response to an event
// Used by WindowManager::update
bool InkHUD::Applet::wantsToRender()
{
return wantRender;
}
// Does the applet want to be moved to foreground before next render, to show new data?
// User specifies whether an applet has permission for this, using the on-screen menu
// Used by WindowManager::update
bool InkHUD::Applet::wantsToAutoshow()
{
return wantAutoshow;
}
// Which technique would this applet prefer that the display use to change the image?
// Used by WindowManager::update
Drivers::EInk::UpdateTypes InkHUD::Applet::wantsUpdateType()
{
return wantUpdateType;
}
// Get size of the applet's drawing space from its tile
// Performed immediately before derived applet's drawing code runs
void InkHUD::Applet::updateDimensions()
{
assert(assignedTile);
WIDTH = assignedTile->getWidth();
HEIGHT = assignedTile->getHeight();
_width = WIDTH;
_height = HEIGHT;
}
// Ensure that render() always starts with the same initial drawing config
void InkHUD::Applet::resetDrawingSpace()
{
resetCrop(); // Allow pixel from any region of the applet to draw
setTextColor(BLACK); // Reset text params
setCursor(0, 0);
setTextWrap(false);
setFont(fontSmall);
}
// Tell InkHUD::Renderer that we want to render now
// Applets should internally listen for events they are interested in, via MeshModule, CallbackObserver etc
// When an applet decides it has heard something important, and wants to redraw, it calls this method
// Once the renderer has given other applets a chance to process whatever event we just detected,
// it will run Applet::render(), which may draw our applet to screen, if it is shown (foreground)
// We should requestUpdate even if our applet is currently background, because this might be changed by autoshow
void InkHUD::Applet::requestUpdate(Drivers::EInk::UpdateTypes type)
{
wantRender = true;
wantUpdateType = type;
inkhud->requestUpdate();
}
// Ask window manager to move this applet to foreground at start of next render
// Users select which applets have permission for this using the on-screen menu
void InkHUD::Applet::requestAutoshow()
{
wantAutoshow = true;
}
// Called when an Applet begins running
// Active applets are considered "enabled"
// They should now listen for events, and request their own updates
// They may also be unexpectedly renderer at any time by other InkHUD components
// Applets can be activated at run-time through the on-screen menu
void InkHUD::Applet::activate()
{
onActivate(); // Call derived class' handler
active = true;
}
// Called when an Applet stops running
// Inactive applets are considered "disabled"
// They should not listen for events, process data
// They will not be rendered
// Applets can be deactivated at run-time through the on-screen menu
void InkHUD::Applet::deactivate()
{
// If applet is still in foreground, run its onBackground code first
if (isForeground())
sendToBackground();
// If applet is active, run its onDeactivate code first
if (isActive())
onDeactivate(); // Derived class' handler
active = false;
}
// Is the Applet running?
// Note: active / inactive is not related to background / foreground
// An inactive applet is *fully* disabled
bool InkHUD::Applet::isActive()
{
return active;
}
// Begin showing the Applet
// It will be rendered immediately to whichever tile it is assigned
// The Renderer will also now honor requestUpdate() calls from this applet
void InkHUD::Applet::bringToForeground()
{
if (!foreground) {
foreground = true;
onForeground(); // Run derived applet class' handler
}
requestUpdate();
}
// Stop showing the Applet
// Calls to requestUpdate() will no longer be honored
// When one applet moves to background, another should move to foreground (exception: some system applets)
void InkHUD::Applet::sendToBackground()
{
if (foreground) {
foreground = false;
onBackground(); // Run derived applet class' handler
}
}
// Is the applet currently displayed on a tile
// Note: in some uncommon situations, an applet may be "foreground", and still not visible.
// This can occur when a system applet is covering the screen (e.g. during BLE pairing)
// This is not our applets responsibility to handle,
// as in those situations, the system applet will have "locked" rendering
bool InkHUD::Applet::isForeground()
{
return foreground;
}
// Limit drawing to a certain region of the applet
// Pixels outside this region will be discarded
void InkHUD::Applet::setCrop(int16_t left, int16_t top, uint16_t width, uint16_t height)
{
cropLeft = left;
cropTop = top;
cropWidth = width;
cropHeight = height;
}
// Allow drawing to any region of the Applet
// Reverses Applet::setCrop
void InkHUD::Applet::resetCrop()
{
setCrop(0, 0, width(), height());
}
// Convert relative width to absolute width, in px
// X(0) is 0
// X(0.5) is width() / 2
// X(1) is width()
uint16_t InkHUD::Applet::X(float f)
{
return width() * f;
}
// Convert relative hight to absolute height, in px
// Y(0) is 0
// Y(0.5) is height() / 2
// Y(1) is height()
uint16_t InkHUD::Applet::Y(float f)
{
return height() * f;
}
// Print text, specifying the position of any edge / corner of the textbox
void InkHUD::Applet::printAt(int16_t x, int16_t y, const char *text, HorizontalAlignment ha, VerticalAlignment va)
{
// We do still have to run getTextBounds to find the width
int16_t textOffsetX, textOffsetY;
uint16_t textWidth, textHeight;
getTextBounds(text, 0, 0, &textOffsetX, &textOffsetY, &textWidth, &textHeight);
int16_t cursorX = 0;
int16_t cursorY = 0;
switch (ha) {
case LEFT:
cursorX = x - textOffsetX;
break;
case CENTER:
cursorX = (x - textOffsetX) - (textWidth / 2);
break;
case RIGHT:
cursorX = (x - textOffsetX) - textWidth;
break;
}
// We're using a fixed line height, rather than sizing to text (getTextBounds)
switch (va) {
case TOP:
cursorY = y + currentFont.heightAboveCursor();
break;
case MIDDLE:
cursorY = (y + currentFont.heightAboveCursor()) - (currentFont.lineHeight() / 2);
break;
case BOTTOM:
cursorY = (y + currentFont.heightAboveCursor()) - currentFont.lineHeight();
break;
}
setCursor(cursorX, cursorY);
print(text);
}
// Print text, specifying the position of any edge / corner of the textbox
void InkHUD::Applet::printAt(int16_t x, int16_t y, std::string text, HorizontalAlignment ha, VerticalAlignment va)
{
printAt(x, y, text.c_str(), ha, va);
}
// Set which font should be used for subsequent drawing
// This is AppletFont type, which is a wrapper for AdafruitGFX font, with some precalculated dimension data
void InkHUD::Applet::setFont(AppletFont f)
{
GFX::setFont(f.gfxFont);
currentFont = f;
}
// Get which font is currently being used for drawing
// This is AppletFont type, which is a wrapper for AdafruitGFX font, with some precalculated dimension data
InkHUD::AppletFont InkHUD::Applet::getFont()
{
return currentFont;
}
// Parse any text which might have "special characters"
// Re-encodes UTF-8 characters to match our 8-bit encoded fonts
std::string InkHUD::Applet::parse(std::string text)
{
return getFont().decodeUTF8(text);
}
// Get the best version of a node's short name available to us
// Parses any non-ascii chars
// Swaps for last-four of node-id if the real short name is unknown or can't be rendered (emoji)
std::string InkHUD::Applet::parseShortName(meshtastic_NodeInfoLite *node)
{
assert(node);
// Use the true shortname if known, and doesn't contain any unprintable characters (emoji, etc.)
if (node->has_user) {
std::string parsed = parse(node->user.short_name);
if (isPrintable(parsed))
return parsed;
}
// Otherwise, use the "last 4" of node id
// - if short name unknown, or
// - if short name is emoji (we can't render this)
std::string nodeID = hexifyNodeNum(node->num);
return nodeID.substr(nodeID.length() - 4);
}
// Determine if all characters of a string are printable using the current font
bool InkHUD::Applet::isPrintable(std::string text)
{
// Scan for DEL (0x7F), which is the value assigned by AppletFont::applyEncoding if a unicode character is not handled
// Todo: move this to from DEL to SUB, once the fonts have been changed for this
for (char &c : text) {
if (c == '\x7F')
return false;
}
// No unprintable characters found
return true;
}
// Gets rendered width of a string
// Wrapper for getTextBounds
uint16_t InkHUD::Applet::getTextWidth(const char *text)
{
// We do still have to run getTextBounds to find the width
int16_t textOffsetX, textOffsetY;
uint16_t textWidth, textHeight;
getTextBounds(text, 0, 0, &textOffsetX, &textOffsetY, &textWidth, &textHeight);
return textWidth;
}
// Gets rendered width of a string
// Wrapper for getTextBounds
uint16_t InkHUD::Applet::getTextWidth(std::string text)
{
return getTextWidth(text.c_str());
}
// Evaluate SNR and RSSI to qualify signal strength at one of four discrete levels
// Roughly comparable to values used by the iOS app;
// I didn't actually go look up the code, just fit to a sample graphic I have of the iOS signal indicator
InkHUD::Applet::SignalStrength InkHUD::Applet::getSignalStrength(float snr, float rssi)
{
uint8_t score = 0;
// Give a score for the SNR
if (snr > -17.5)
score += 2;
else if (snr > -26.0)
score += 1;
// Give a score for the RSSI
if (rssi > -115.0)
score += 3;
else if (rssi > -120.0)
score += 2;
else if (rssi > -126.0)
score += 1;
// Combine scores, then give a result
if (score >= 5)
return SIGNAL_GOOD;
else if (score >= 4)
return SIGNAL_FAIR;
else if (score > 0)
return SIGNAL_BAD;
else
return SIGNAL_NONE;
}
// Apply the standard "node id" formatting to a nodenum int: !0123abdc
std::string InkHUD::Applet::hexifyNodeNum(NodeNum num)
{
// Not found in nodeDB, show a hex nodeid instead
char nodeIdHex[10];
sprintf(nodeIdHex, "!%0x", num); // Convert to the typical "fixed width hex with !" format
return std::string(nodeIdHex);
}
// Print text, with word wrapping
// Avoids splitting words in half, instead moving the entire word to a new line wherever possible
void InkHUD::Applet::printWrapped(int16_t left, int16_t top, uint16_t width, std::string text)
{
// Place the AdafruitGFX cursor to suit our "top" coord
setCursor(left, top + getFont().heightAboveCursor());
// How wide a space character is
// Used when simulating print, for dimensioning
// Works around issues where getTextDimensions() doesn't account for whitespace
const uint8_t wSp = getFont().widthBetweenWords();
// Move through our text, character by character
uint16_t wordStart = 0;
for (uint16_t i = 0; i < text.length(); i++) {
// Found: end of word (split by spaces or newline)
// Also handles end of string
if (text[i] == ' ' || text[i] == '\n' || i == text.length() - 1) {
// Isolate this word
uint16_t wordLength = (i - wordStart) + 1; // Plus one. Imagine: "a". End - Start is 0, but length is 1
std::string word = text.substr(wordStart, wordLength);
wordStart = i + 1; // Next word starts *after* the space
// If word is terminated by a newline char, don't actually print it.
// We'll manually add a new line later
if (word.back() == '\n')
word.pop_back();
// Measure the word, in px
int16_t l, t;
uint16_t w, h;
getTextBounds(word.c_str(), getCursorX(), getCursorY(), &l, &t, &w, &h);
// Word is short
if (w < width) {
// Word fits on current line
if ((l + w + wSp) < left + width)
print(word.c_str());
// Word doesn't fit on current line
else {
setCursor(left, getCursorY() + getFont().lineHeight()); // Newline
print(word.c_str());
}
}
// Word is really long
// (wider than applet)
else {
// Horribly inefficient:
// Rather than working directly with the glyph sizes,
// we're going to run everything through getTextBounds as a c-string of length 1
// This is because AdafruitGFX has special internal handling for their legacy 6x8 font,
// which would be a pain to add manually here.
// These super-long strings probably don't come up often so we can maybe tolerate this.
// Todo: rewrite making use of AdafruitGFX native text wrapping
char cstr[] = {0, 0};
int16_t l, t;
uint16_t w, h;
for (uint16_t c = 0; c < word.length(); c++) {
// Shove next char into a c string
cstr[0] = word[c];
getTextBounds(cstr, getCursorX(), getCursorY(), &l, &t, &w, &h);
// Manual newline, if next character will spill beyond screen edge
if ((l + w) > left + width)
setCursor(left, getCursorY() + getFont().lineHeight());
// Print next character
print(word[c]);
}
}
}
// If word was terminated by a newline char, manually add the new line now
if (text[i] == '\n') {
setCursor(left, getCursorY() + getFont().lineHeight()); // Manual newline
wordStart = i + 1; // New word begins after the newline. Otherwise print will add an *extra* line
}
}
}
// Simulate running printWrapped, to determine how tall the block of text will be.
// This is a wasteful way of handling things. Maybe some way to optimize in future?
uint32_t InkHUD::Applet::getWrappedTextHeight(int16_t left, uint16_t width, std::string text)
{
// Cache the current crop region
int16_t cL = cropLeft;
int16_t cT = cropTop;
uint16_t cW = cropWidth;
uint16_t cH = cropHeight;
setCrop(-1, -1, 0, 0); // Set crop to temporarily discard all pixels
printWrapped(left, 0, width, text); // Simulate only - no pixels drawn
// Restore previous crop region
cropLeft = cL;
cropTop = cT;
cropWidth = cW;
cropHeight = cH;
// Note: printWrapped() offsets the initial cursor position by heightAboveCursor() val,
// so we need to account for that when determining the height
return (getCursorY() + getFont().heightBelowCursor());
}
// Fill a region with sparse diagonal lines, to create a pseudo-translucent fill
void InkHUD::Applet::hatchRegion(int16_t x, int16_t y, uint16_t w, uint16_t h, uint8_t spacing, Color color)
{
// Cache the currently cropped region
int16_t oldCropL = cropLeft;
int16_t oldCropT = cropTop;
uint16_t oldCropW = cropWidth;
uint16_t oldCropH = cropHeight;
setCrop(x, y, w, h);
// Draw lines starting along the top edge, every few px
for (int16_t ix = x; ix < x + w; ix += spacing) {
for (int16_t i = 0; i < w || i < h; i++) {
drawPixel(ix + i, y + i, color);
}
}
// Draw lines starting along the left edge, every few px
for (int16_t iy = y; iy < y + h; iy += spacing) {
for (int16_t i = 0; i < w || i < h; i++) {
drawPixel(x + i, iy + i, color);
}
}
// Restore any previous crop
// If none was set, this will clear
cropLeft = oldCropL;
cropTop = oldCropT;
cropWidth = oldCropW;
cropHeight = oldCropH;
}
// Get a human readable time representation of an epoch time (seconds since 1970)
// If time is invalid, this will be an empty string
std::string InkHUD::Applet::getTimeString(uint32_t epochSeconds)
{
#ifdef BUILD_EPOCH
constexpr uint32_t validAfterEpoch = BUILD_EPOCH - (SEC_PER_DAY * 30 * 6); // 6 Months prior to build
#else
constexpr uint32_t validAfterEpoch = 1738368000 - (SEC_PER_DAY * 30 * 6); // 6 Months prior to Feb 1, 2025 12:00:00 AM GMT
#endif
uint32_t epochNow = getValidTime(RTCQuality::RTCQualityDevice, true);
int32_t daysAgo = (epochNow - epochSeconds) / SEC_PER_DAY;
int32_t hoursAgo = (epochNow - epochSeconds) / SEC_PER_HOUR;
// Times are invalid: rtc is much older than when code was built
// Don't give any human readable string
if (epochNow <= validAfterEpoch)
return "";
// Times are invalid: argument time is significantly ahead of RTC
// Don't give any human readable string
if (daysAgo < -2)
return "";
// Times are probably invalid: more than 6 months ago
if (daysAgo > 6 * 30)
return "";
if (daysAgo > 1)
return to_string(daysAgo) + " days ago";
else if (hoursAgo > 18)
return "Yesterday";
else {
uint32_t hms = epochSeconds % SEC_PER_DAY;
hms = (hms + SEC_PER_DAY) % SEC_PER_DAY;
// Tear apart hms into h:m
uint32_t hour = hms / SEC_PER_HOUR;
uint32_t min = (hms % SEC_PER_HOUR) / SEC_PER_MIN;
// Format the clock string, either 12 hour or 24 hour
char clockStr[11];
if (config.display.use_12h_clock)
sprintf(clockStr, "%u:%02u %s", (hour % 12 == 0 ? 12 : hour % 12), min, hour > 11 ? "PM" : "AM");
else
sprintf(clockStr, "%02u:%02u", hour, min);
return clockStr;
}
}
// If no argument specified, get time string for the current RTC time
std::string InkHUD::Applet::getTimeString()
{
return getTimeString(getValidTime(RTCQuality::RTCQualityDevice, true));
}
// Calculate how many nodes have been seen within our preferred window of activity
// This period is set by user, via the menu
// Todo: optimize to calculate once only per WindowManager::render
uint16_t InkHUD::Applet::getActiveNodeCount()
{
// Don't even try to count nodes if RTC isn't set
// The last heard values in nodedb will be incomprehensible
if (getRTCQuality() == RTCQualityNone)
return 0;
uint16_t count = 0;
// For each node in db
for (uint16_t i = 0; i < nodeDB->getNumMeshNodes(); i++) {
meshtastic_NodeInfoLite *node = nodeDB->getMeshNodeByIndex(i);
// Check if heard recently, and not our own node
if (sinceLastSeen(node) < settings->recentlyActiveSeconds && node->num != nodeDB->getNodeNum())
count++;
}
return count;
}
// Get an abbreviated, human readable, distance string
// Honors config.display.units, to offer both metric and imperial
std::string InkHUD::Applet::localizeDistance(uint32_t meters)
{
constexpr float FEET_PER_METER = 3.28084;
constexpr uint16_t FEET_PER_MILE = 5280;
// Resulting string
std::string localized;
// Imperial
if (config.display.units == meshtastic_Config_DisplayConfig_DisplayUnits_IMPERIAL) {
uint32_t feet = meters * FEET_PER_METER;
// Distant (miles, rounded)
if (feet > FEET_PER_MILE / 2) {
localized += to_string((uint32_t)roundf(feet / FEET_PER_MILE));
localized += "mi";
}
// Nearby (feet)
else {
localized += to_string(feet);
localized += "ft";
}
}
// Metric
else {
// Distant (kilometers, rounded)
if (meters >= 500) {
localized += to_string((uint32_t)roundf(meters / 1000.0));
localized += "km";
}
// Nearby (meters)
else {
localized += to_string(meters);
localized += "m";
}
}
return localized;
}
// Print text with a "faux bold" effect, by drawing it multiple times, offsetting slightly
void InkHUD::Applet::printThick(int16_t xCenter, int16_t yCenter, std::string text, uint8_t thicknessX, uint8_t thicknessY)
{
// How many times to draw along x axis
int16_t xStart;
int16_t xEnd;
switch (thicknessX) {
case 0:
assert(false);
case 1:
xStart = xCenter;
xEnd = xCenter;
break;
case 2:
xStart = xCenter;
xEnd = xCenter + 1;
break;
default:
xStart = xCenter - (thicknessX / 2);
xEnd = xCenter + (thicknessX / 2);
}
// How many times to draw along Y axis
int16_t yStart;
int16_t yEnd;
switch (thicknessY) {
case 0:
assert(false);
case 1:
yStart = yCenter;
yEnd = yCenter;
break;
case 2:
yStart = yCenter;
yEnd = yCenter + 1;
break;
default:
yStart = yCenter - (thicknessY / 2);
yEnd = yCenter + (thicknessY / 2);
}
// Print multiple times, overlapping
for (int16_t x = xStart; x <= xEnd; x++) {
for (int16_t y = yStart; y <= yEnd; y++) {
printAt(x, y, text, CENTER, MIDDLE);
}
}
}
// Allow this applet to suppress notifications
// Asked before a notification is shown via the NotificationApplet
// An applet might want to suppress a notification if the applet itself already displays this info
// Example: AllMessageApplet should not approve notifications for messages, if it is in foreground
bool InkHUD::Applet::approveNotification(NicheGraphics::InkHUD::Notification &n)
{
// By default, no objection
return true;
}
// Draw the standard header, used by most Applets
/*
┌───────────────────────────────┐
│ Applet::name here │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ │
│ │
│ │
└───────────────────────────────┘
*/
void InkHUD::Applet::drawHeader(std::string text)
{
// Y position for divider
// - between header text and messages
constexpr int16_t padDivH = 2;
const int16_t headerDivY = padDivH + fontSmall.lineHeight() + padDivH - 1;
// Print header
printAt(0, padDivH, text);
// Divider
// - below header text: separates message
// - above header text: separates other applets
for (int16_t x = 0; x < width(); x += 2) {
drawPixel(x, 0, BLACK);
drawPixel(x, headerDivY, BLACK); // Dotted 50%
}
}
// Get the height of the standard applet header
// This will vary, depending on font
// Applets use this value to avoid drawing overtop the header
uint16_t InkHUD::Applet::getHeaderHeight()
{
// Y position for divider
// - between header text and messages
constexpr int16_t padDivH = 2;
const int16_t headerDivY = padDivH + fontSmall.lineHeight() + padDivH - 1;
return headerDivY + 1; // "Plus one": height is always one more than Y position
}
// "Scale to fit": width of Meshtastic logo to fit given region, maintaining aspect ratio
uint16_t InkHUD::Applet::getLogoWidth(uint16_t limitWidth, uint16_t limitHeight)
{
// Determine whether we're limited by width or height
// Makes sure we draw the logo as large as possible, within the specified region,
// while still maintaining correct aspect ratio
if (limitWidth > limitHeight * LOGO_ASPECT_RATIO)
return limitHeight * LOGO_ASPECT_RATIO;
else
return limitWidth;
}
// "Scale to fit": height of Meshtastic logo to fit given region, maintaining aspect ratio
uint16_t InkHUD::Applet::getLogoHeight(uint16_t limitWidth, uint16_t limitHeight)
{
// Determine whether we're limited by width or height
// Makes sure we draw the logo as large as possible, within the specified region,
// while still maintaining correct aspect ratio
if (limitHeight > limitWidth / LOGO_ASPECT_RATIO)
return limitWidth / LOGO_ASPECT_RATIO;
else
return limitHeight;
}
// Draw a scalable Meshtastic logo
// Make sure to provide dimensions which have the correct aspect ratio (~2)
// Three paths, drawn thick using quads, with one corner "radiused"
/*
- ^
/- /-\
// // \\
// // \\
// // \\
// // \\
*/
void InkHUD::Applet::drawLogo(int16_t centerX, int16_t centerY, uint16_t width, uint16_t height, Color color)
{
struct Point {
int x;
int y;
};
typedef Point Distance;
int16_t logoTh = width * 0.068; // Thickness scales with width. Measured from logo at meshtastic.org.
int16_t logoL = centerX - (width / 2) + (logoTh / 2);
int16_t logoT = centerY - (height / 2) + (logoTh / 2);
int16_t logoW = width - logoTh;
int16_t logoH = height - logoTh;
int16_t logoR = logoL + logoW - 1;
int16_t logoB = logoT + logoH - 1;
// Points for paths (a, b, and c)
/*
+-----------------------------+
--| a2 b2/c1 |
| |
| |
| |
--| a1 b1 c2 |
+-----------------------------+
| | | |
*/
Point a1 = {map(0, 0, 3, logoL, logoR), logoB};
Point a2 = {map(1, 0, 3, logoL, logoR), logoT};
Point b1 = {map(1, 0, 3, logoL, logoR), logoB};
Point b2 = {map(2, 0, 3, logoL, logoR), logoT};
Point c1 = {map(2, 0, 3, logoL, logoR), logoT};
Point c2 = {map(3, 0, 3, logoL, logoR), logoB};
// Find angle of the path(s)
// Used to thicken the single pixel paths
/*
+-------------------------------+
| a2 |
| -| |
| -/ | |
| -/ | |
| -/# | |
| -/ # | |
| / # | |
| a1---------- |
+-------------------------------+
*/
Distance deltaA = {abs(a2.x - a1.x), abs(a2.y - a1.y)};
float angle = tanh((float)deltaA.y / deltaA.x);
// Distance (at right angle to the paths), which will give corners for our "quads"
// The distance is unsigned. We will vary the signedness of the x and y components to suit the path and corner
/*
| a2
| .
| ..
| aq1 ..
| # ..
| | # ..
|fromPath.y | # ..
| +----a1
|
| fromPath.x
+--------------------------------
*/
Distance fromPath;
fromPath.x = cos(radians(90) - angle) * logoTh * 0.5;
fromPath.y = sin(radians(90) - angle) * logoTh * 0.5;
// Make the paths thick
// Corner points for the rectangles (quads):
/*
aq2
a2
/ aq3
/
/
aq1 /
a1
aq3
*/
// Filled as two triangles per quad:
/*
aq2 #
# ###
## # aq3
## ### -
## #### -/
## ### -/
## #### -/
aq1 ## -/
--- -/
\---aq4
*/
// Make the path thick: path a becomes quad a
Point aq1{a1.x - fromPath.x, a1.y - fromPath.y};
Point aq2{a2.x - fromPath.x, a2.y - fromPath.y};
Point aq3{a2.x + fromPath.x, a2.y + fromPath.y};
Point aq4{a1.x + fromPath.x, a1.y + fromPath.y};
fillTriangle(aq1.x, aq1.y, aq2.x, aq2.y, aq3.x, aq3.y, color);
fillTriangle(aq1.x, aq1.y, aq3.x, aq3.y, aq4.x, aq4.y, color);
// Make the path thick: path b becomes quad b
Point bq1{b1.x - fromPath.x, b1.y - fromPath.y};
Point bq2{b2.x - fromPath.x, b2.y - fromPath.y};
Point bq3{b2.x + fromPath.x, b2.y + fromPath.y};
Point bq4{b1.x + fromPath.x, b1.y + fromPath.y};
fillTriangle(bq1.x, bq1.y, bq2.x, bq2.y, bq3.x, bq3.y, color);
fillTriangle(bq1.x, bq1.y, bq3.x, bq3.y, bq4.x, bq4.y, color);
// Make the path thick: path c becomes quad c
Point cq1{c1.x - fromPath.x, c1.y + fromPath.y};
Point cq2{c2.x - fromPath.x, c2.y + fromPath.y};
Point cq3{c2.x + fromPath.x, c2.y - fromPath.y};
Point cq4{c1.x + fromPath.x, c1.y - fromPath.y};
fillTriangle(cq1.x, cq1.y, cq2.x, cq2.y, cq3.x, cq3.y, color);
fillTriangle(cq1.x, cq1.y, cq3.x, cq3.y, cq4.x, cq4.y, color);
// Radius the intersection of quad b and quad c
/*
b2 / c1
####
## ##
/ \
/ \/ \
/ /\ \
/ / \ \
*/
// Don't attempt if logo is tiny
if (logoTh > 3) {
// The radius for the cap *should* be the same as logoTh, but it's not, due to accumulated rounding
// We get better results just re-deriving it
int16_t capRad = sqrt(pow(fromPath.x, 2) + pow(fromPath.y, 2));
fillCircle(b2.x, b2.y, capRad, color);
}
}
#endif