firmware/src/gps/GPS.cpp
Tom Fifield cff93adb5e
[WIP] LS20031 setup support (#5737)
LS20031 is a MTK3339-based chip. Therefore, it should share some
heritage with other MTK3333 or MTK3339 chips. Re-use the L76B
commands for setup.
2025-03-21 05:58:52 -05:00

1748 lines
67 KiB
C++

#include <cstring> // Include for strstr
#include <string>
#include <vector>
#include "configuration.h"
#if !MESHTASTIC_EXCLUDE_GPS
#include "Default.h"
#include "GPS.h"
#include "GpioLogic.h"
#include "NodeDB.h"
#include "PowerMon.h"
#include "RTC.h"
#include "Throttle.h"
#include "buzz.h"
#include "meshUtils.h"
#include "main.h" // pmu_found
#include "sleep.h"
#include "GPSUpdateScheduling.h"
#include "cas.h"
#include "ubx.h"
#ifdef ARCH_PORTDUINO
#include "PortduinoGlue.h"
#include "meshUtils.h"
#include <algorithm>
#include <ctime>
#endif
#ifndef GPS_RESET_MODE
#define GPS_RESET_MODE HIGH
#endif
// Not all platforms have std::size().
template <typename T, std::size_t N> std::size_t array_count(const T (&)[N])
{
return N;
}
#if defined(NRF52840_XXAA) || defined(NRF52833_XXAA) || defined(ARCH_ESP32) || defined(ARCH_PORTDUINO)
#if defined(RAK2560)
HardwareSerial *GPS::_serial_gps = &Serial2;
#else
HardwareSerial *GPS::_serial_gps = &Serial1;
#endif
#elif defined(ARCH_RP2040)
SerialUART *GPS::_serial_gps = &Serial1;
#else
HardwareSerial *GPS::_serial_gps = nullptr;
#endif
GPS *gps = nullptr;
static GPSUpdateScheduling scheduling;
/// Multiple GPS instances might use the same serial port (in sequence), but we can
/// only init that port once.
static bool didSerialInit;
static struct uBloxGnssModelInfo {
char swVersion[30];
char hwVersion[10];
uint8_t extensionNo;
char extension[10][30];
uint8_t protocol_version;
} ublox_info;
#define GPS_SOL_EXPIRY_MS 5000 // in millis. give 1 second time to combine different sentences. NMEA Frequency isn't higher anyway
#define NMEA_MSG_GXGSA "GNGSA" // GSA message (GPGSA, GNGSA etc)
// For logging
static const char *getGPSPowerStateString(GPSPowerState state)
{
switch (state) {
case GPS_ACTIVE:
return "ACTIVE";
case GPS_IDLE:
return "IDLE";
case GPS_SOFTSLEEP:
return "SOFTSLEEP";
case GPS_HARDSLEEP:
return "HARDSLEEP";
case GPS_OFF:
return "OFF";
default:
assert(false); // Unhandled enum value..
return "FALSE"; // to make new ESP-IDF happy
}
}
static void UBXChecksum(uint8_t *message, size_t length)
{
uint8_t CK_A = 0, CK_B = 0;
// Calculate the checksum, starting from the CLASS field (which is message[2])
for (size_t i = 2; i < length - 2; i++) {
CK_A = (CK_A + message[i]) & 0xFF;
CK_B = (CK_B + CK_A) & 0xFF;
}
// Place the calculated checksum values in the message
message[length - 2] = CK_A;
message[length - 1] = CK_B;
}
// Calculate the checksum for a CAS packet
static void CASChecksum(uint8_t *message, size_t length)
{
uint32_t cksum = ((uint32_t)message[5] << 24); // Message ID
cksum += ((uint32_t)message[4]) << 16; // Class
cksum += message[2]; // Payload Len
// Iterate over the payload as a series of uint32_t's and
// accumulate the cksum
for (size_t i = 0; i < (length - 10) / 4; i++) {
uint32_t pl = 0;
memcpy(&pl, (message + 6) + (i * sizeof(uint32_t)), sizeof(uint32_t)); // avoid pointer dereference
cksum += pl;
}
// Place the checksum values in the message
message[length - 4] = (cksum & 0xFF);
message[length - 3] = (cksum & (0xFF << 8)) >> 8;
message[length - 2] = (cksum & (0xFF << 16)) >> 16;
message[length - 1] = (cksum & (0xFF << 24)) >> 24;
}
// Function to create a ublox packet for editing in memory
uint8_t GPS::makeUBXPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg)
{
// Construct the UBX packet
UBXscratch[0] = 0xB5; // header
UBXscratch[1] = 0x62; // header
UBXscratch[2] = class_id; // class
UBXscratch[3] = msg_id; // id
UBXscratch[4] = payload_size; // length
UBXscratch[5] = 0x00;
UBXscratch[6 + payload_size] = 0x00; // CK_A
UBXscratch[7 + payload_size] = 0x00; // CK_B
for (int i = 0; i < payload_size; i++) {
UBXscratch[6 + i] = pgm_read_byte(&msg[i]);
}
UBXChecksum(UBXscratch, (payload_size + 8));
return (payload_size + 8);
}
// Function to create a CAS packet for editing in memory
uint8_t GPS::makeCASPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg)
{
// General CAS structure
// | H1 | H2 | payload_len | cls | msg | Payload ... | Checksum |
// Size: | 1 | 1 | 2 | 1 | 1 | payload_len | 4 |
// Pos: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 ... | 6 + payload_len ... |
// |------|------|-------------|------|------|------|--------------|---------------------------|
// | 0xBA | 0xCE | 0xXX | 0xXX | 0xXX | 0xXX | 0xXX | 0xXX ... | 0xXX | 0xXX | 0xXX | 0xXX |
// Construct the CAS packet
UBXscratch[0] = 0xBA; // header 1 (0xBA)
UBXscratch[1] = 0xCE; // header 2 (0xCE)
UBXscratch[2] = payload_size; // length 1
UBXscratch[3] = 0; // length 2
UBXscratch[4] = class_id; // class
UBXscratch[5] = msg_id; // id
UBXscratch[6 + payload_size] = 0x00; // Checksum
UBXscratch[7 + payload_size] = 0x00;
UBXscratch[8 + payload_size] = 0x00;
UBXscratch[9 + payload_size] = 0x00;
for (int i = 0; i < payload_size; i++) {
UBXscratch[6 + i] = pgm_read_byte(&msg[i]);
}
CASChecksum(UBXscratch, (payload_size + 10));
#if defined(GPS_DEBUG) && defined(DEBUG_PORT)
LOG_DEBUG("CAS packet: ");
DEBUG_PORT.hexDump(MESHTASTIC_LOG_LEVEL_DEBUG, UBXscratch, payload_size + 10);
#endif
return (payload_size + 10);
}
GPS_RESPONSE GPS::getACK(const char *message, uint32_t waitMillis)
{
uint8_t buffer[768] = {0};
uint8_t b;
int bytesRead = 0;
uint32_t startTimeout = millis() + waitMillis;
#ifdef GPS_DEBUG
std::string debugmsg = "";
#endif
while (millis() < startTimeout) {
if (_serial_gps->available()) {
b = _serial_gps->read();
#ifdef GPS_DEBUG
debugmsg += vformat("%c", (b >= 32 && b <= 126) ? b : '.');
#endif
buffer[bytesRead] = b;
bytesRead++;
if ((bytesRead == 767) || (b == '\r')) {
if (strnstr((char *)buffer, message, bytesRead) != nullptr) {
#ifdef GPS_DEBUG
LOG_DEBUG("Found: %s", message); // Log the found message
#endif
return GNSS_RESPONSE_OK;
} else {
bytesRead = 0;
#ifdef GPS_DEBUG
LOG_DEBUG(debugmsg.c_str());
#endif
}
}
}
}
return GNSS_RESPONSE_NONE;
}
GPS_RESPONSE GPS::getACKCas(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis)
{
uint32_t startTime = millis();
uint8_t buffer[CAS_ACK_NACK_MSG_SIZE] = {0};
uint8_t bufferPos = 0;
// CAS-ACK-(N)ACK structure
// | H1 | H2 | Payload Len | cls | msg | Payload | Checksum (4) |
// | | | | | | Cls | Msg | Reserved | |
// |------|------|-------------|------|------|------|------|-------------|---------------------------|
// ACK-NACK| 0xBA | 0xCE | 0x04 | 0x00 | 0x05 | 0x00 | 0xXX | 0xXX | 0x00 | 0x00 | 0xXX | 0xXX | 0xXX | 0xXX |
// ACK-ACK | 0xBA | 0xCE | 0x04 | 0x00 | 0x05 | 0x01 | 0xXX | 0xXX | 0x00 | 0x00 | 0xXX | 0xXX | 0xXX | 0xXX |
while (Throttle::isWithinTimespanMs(startTime, waitMillis)) {
if (_serial_gps->available()) {
buffer[bufferPos++] = _serial_gps->read();
// keep looking at the first two bytes of buffer until
// we have found the CAS frame header (0xBA, 0xCE), if not
// keep reading bytes until we find a frame header or we run
// out of time.
if ((bufferPos == 2) && !(buffer[0] == 0xBA && buffer[1] == 0xCE)) {
buffer[0] = buffer[1];
buffer[1] = 0;
bufferPos = 1;
}
}
// we have read all the bytes required for the Ack/Nack (14-bytes)
// and we must have found a frame to get this far
if (bufferPos == sizeof(buffer) - 1) {
uint8_t msg_cls = buffer[4]; // message class should be 0x05
uint8_t msg_msg_id = buffer[5]; // message id should be 0x00 or 0x01
uint8_t payload_cls = buffer[6]; // payload class id
uint8_t payload_msg = buffer[7]; // payload message id
// Check for an ACK-ACK for the specified class and message id
if ((msg_cls == 0x05) && (msg_msg_id == 0x01) && payload_cls == class_id && payload_msg == msg_id) {
#ifdef GPS_DEBUG
LOG_INFO("Got ACK for class %02X message %02X in %dms", class_id, msg_id, millis() - startTime);
#endif
return GNSS_RESPONSE_OK;
}
// Check for an ACK-NACK for the specified class and message id
if ((msg_cls == 0x05) && (msg_msg_id == 0x00) && payload_cls == class_id && payload_msg == msg_id) {
#ifdef GPS_DEBUG
LOG_WARN("Got NACK for class %02X message %02X in %dms", class_id, msg_id, millis() - startTime);
#endif
return GNSS_RESPONSE_NAK;
}
// This isn't the frame we are looking for, clear the buffer
// and try again until we run out of time.
memset(buffer, 0x0, sizeof(buffer));
bufferPos = 0;
}
}
return GNSS_RESPONSE_NONE;
}
GPS_RESPONSE GPS::getACK(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis)
{
uint8_t b;
uint8_t ack = 0;
const uint8_t ackP[2] = {class_id, msg_id};
uint8_t buf[10] = {0xB5, 0x62, 0x05, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00};
uint32_t startTime = millis();
const char frame_errors[] = "More than 100 frame errors";
int sCounter = 0;
#ifdef GPS_DEBUG
std::string debugmsg = "";
#endif
for (int j = 2; j < 6; j++) {
buf[8] += buf[j];
buf[9] += buf[8];
}
for (int j = 0; j < 2; j++) {
buf[6 + j] = ackP[j];
buf[8] += buf[6 + j];
buf[9] += buf[8];
}
while (Throttle::isWithinTimespanMs(startTime, waitMillis)) {
if (ack > 9) {
#ifdef GPS_DEBUG
LOG_INFO("Got ACK for class %02X message %02X in %dms", class_id, msg_id, millis() - startTime);
#endif
return GNSS_RESPONSE_OK; // ACK received
}
if (_serial_gps->available()) {
b = _serial_gps->read();
if (b == frame_errors[sCounter]) {
sCounter++;
if (sCounter == 26) {
#ifdef GPS_DEBUG
LOG_DEBUG(debugmsg.c_str());
#endif
return GNSS_RESPONSE_FRAME_ERRORS;
}
} else {
sCounter = 0;
}
#ifdef GPS_DEBUG
debugmsg += vformat("%02X", b);
#endif
if (b == buf[ack]) {
ack++;
} else {
if (ack == 3 && b == 0x00) { // UBX-ACK-NAK message
#ifdef GPS_DEBUG
LOG_DEBUG(debugmsg.c_str());
#endif
LOG_WARN("Got NAK for class %02X message %02X", class_id, msg_id);
return GNSS_RESPONSE_NAK; // NAK received
}
ack = 0; // Reset the acknowledgement counter
}
}
}
#ifdef GPS_DEBUG
LOG_DEBUG(debugmsg.c_str());
LOG_WARN("No response for class %02X message %02X", class_id, msg_id);
#endif
return GNSS_RESPONSE_NONE; // No response received within timeout
}
/**
* @brief
* @note New method, this method can wait for the specified class and message ID, and return the payload
* @param *buffer: The message buffer, if there is a response payload message, it will be returned through the buffer parameter
* @param size: size of buffer
* @param requestedClass: request class constant
* @param requestedID: request message ID constant
* @retval length of payload message
*/
int GPS::getACK(uint8_t *buffer, uint16_t size, uint8_t requestedClass, uint8_t requestedID, uint32_t waitMillis)
{
uint16_t ubxFrameCounter = 0;
uint32_t startTime = millis();
uint16_t needRead = 0;
while (Throttle::isWithinTimespanMs(startTime, waitMillis)) {
if (_serial_gps->available()) {
int c = _serial_gps->read();
switch (ubxFrameCounter) {
case 0:
// ubxFrame 'μ'
if (c == 0xB5) {
ubxFrameCounter++;
}
break;
case 1:
// ubxFrame 'b'
if (c == 0x62) {
ubxFrameCounter++;
} else {
ubxFrameCounter = 0;
}
break;
case 2:
// Class
if (c == requestedClass) {
ubxFrameCounter++;
} else {
ubxFrameCounter = 0;
}
break;
case 3:
// Message ID
if (c == requestedID) {
ubxFrameCounter++;
} else {
ubxFrameCounter = 0;
}
break;
case 4:
// Payload length lsb
needRead = c;
ubxFrameCounter++;
break;
case 5:
// Payload length msb
needRead |= (c << 8);
ubxFrameCounter++;
// Check for buffer overflow
if (needRead >= size) {
ubxFrameCounter = 0;
break;
}
if (_serial_gps->readBytes(buffer, needRead) != needRead) {
ubxFrameCounter = 0;
} else {
// return payload length
#ifdef GPS_DEBUG
LOG_INFO("Got ACK for class %02X message %02X in %dms", requestedClass, requestedID, millis() - startTime);
#endif
return needRead;
}
break;
default:
break;
}
}
}
return 0;
}
#if GPS_BAUDRATE_FIXED
// if GPS_BAUDRATE is specified in variant, only try that.
static const int serialSpeeds[1] = {GPS_BAUDRATE};
static const int rareSerialSpeeds[1] = {GPS_BAUDRATE};
#else
static const int serialSpeeds[3] = {9600, 115200, 38400};
static const int rareSerialSpeeds[3] = {4800, 57600, GPS_BAUDRATE};
#endif
#ifndef GPS_PROBETRIES
#define GPS_PROBETRIES 2
#endif
/**
* @brief Setup the GPS based on the model detected.
* We detect the GPS by cycling through a set of baud rates, first common then rare.
* For each baud rate, we run GPS::Probe to send commands and match the responses
* to known GPS responses.
* @retval Whether setup reached the end of its potential to configure the GPS.
*/
bool GPS::setup()
{
if (!didSerialInit) {
int msglen = 0;
if (tx_gpio && gnssModel == GNSS_MODEL_UNKNOWN) {
#ifdef TRACKER_T1000_E
// add power up/down strategy, improve ag3335 detection success
digitalWrite(PIN_GPS_EN, LOW);
delay(500);
digitalWrite(GPS_VRTC_EN, LOW);
delay(1000);
digitalWrite(GPS_VRTC_EN, HIGH);
delay(500);
digitalWrite(PIN_GPS_EN, HIGH);
delay(1000);
#endif
if (probeTries < GPS_PROBETRIES) {
LOG_DEBUG("Probe for GPS at %d", serialSpeeds[speedSelect]);
gnssModel = probe(serialSpeeds[speedSelect]);
if (gnssModel == GNSS_MODEL_UNKNOWN) {
if (++speedSelect == array_count(serialSpeeds)) {
speedSelect = 0;
++probeTries;
}
}
}
// Rare Serial Speeds
if (probeTries == GPS_PROBETRIES) {
LOG_DEBUG("Probe for GPS at %d", rareSerialSpeeds[speedSelect]);
gnssModel = probe(rareSerialSpeeds[speedSelect]);
if (gnssModel == GNSS_MODEL_UNKNOWN) {
if (++speedSelect == array_count(rareSerialSpeeds)) {
LOG_WARN("Give up on GPS probe and set to %d", GPS_BAUDRATE);
return true;
}
}
}
}
if (gnssModel != GNSS_MODEL_UNKNOWN) {
setConnected();
} else {
return false;
}
if (gnssModel == GNSS_MODEL_MTK) {
/*
* t-beam-s3-core uses the same L76K GNSS module as t-echo.
* Unlike t-echo, L76K uses 9600 baud rate for communication by default.
* */
// Initialize the L76K Chip, use GPS + GLONASS + BEIDOU
_serial_gps->write("$PCAS04,7*1E\r\n");
delay(250);
// only ask for RMC and GGA
_serial_gps->write("$PCAS03,1,0,0,0,1,0,0,0,0,0,,,0,0*02\r\n");
delay(250);
// Switch to Vehicle Mode, since SoftRF enables Aviation < 2g
_serial_gps->write("$PCAS11,3*1E\r\n");
delay(250);
} else if (gnssModel == GNSS_MODEL_MTK_L76B) {
// Waveshare Pico-GPS hat uses the L76B with 9600 baud
// Initialize the L76B Chip, use GPS + GLONASS
// See note in L76_Series_GNSS_Protocol_Specification, chapter 3.29
_serial_gps->write("$PMTK353,1,1,0,0,0*2B\r\n");
// Above command will reset the GPS and takes longer before it will accept new commands
delay(1000);
// only ask for RMC and GGA (GNRMC and GNGGA)
// See note in L76_Series_GNSS_Protocol_Specification, chapter 2.1
_serial_gps->write("$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n");
delay(250);
// Enable SBAS
_serial_gps->write("$PMTK301,2*2E\r\n");
delay(250);
// Enable PPS for 2D/3D fix only
_serial_gps->write("$PMTK285,3,100*3F\r\n");
delay(250);
// Switch to Fitness Mode, for running and walking purpose with low speed (<5 m/s)
_serial_gps->write("$PMTK886,1*29\r\n");
delay(250);
} else if (gnssModel == GNSS_MODEL_MTK_PA1616S) {
// PA1616S is used in some GPS breakout boards from Adafruit
// PA1616S does not have GLONASS capability. PA1616D does, but is not implemented here.
_serial_gps->write("$PMTK353,1,0,0,0,0*2A\r\n");
// Above command will reset the GPS and takes longer before it will accept new commands
delay(1000);
// Only ask for RMC and GGA (GNRMC and GNGGA)
_serial_gps->write("$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n");
delay(250);
// Enable SBAS / WAAS
_serial_gps->write("$PMTK301,2*2E\r\n");
delay(250);
} else if (gnssModel == GNSS_MODEL_ATGM336H) {
// Set the intial configuration of the device - these _should_ work for most AT6558 devices
msglen = makeCASPacket(0x06, 0x07, sizeof(_message_CAS_CFG_NAVX_CONF), _message_CAS_CFG_NAVX_CONF);
_serial_gps->write(UBXscratch, msglen);
if (getACKCas(0x06, 0x07, 250) != GNSS_RESPONSE_OK) {
LOG_WARN("ATGM336H: Could not set Config");
}
// Set the update frequence to 1Hz
msglen = makeCASPacket(0x06, 0x04, sizeof(_message_CAS_CFG_RATE_1HZ), _message_CAS_CFG_RATE_1HZ);
_serial_gps->write(UBXscratch, msglen);
if (getACKCas(0x06, 0x04, 250) != GNSS_RESPONSE_OK) {
LOG_WARN("ATGM336H: Could not set Update Frequency");
}
// Set the NEMA output messages
// Ask for only RMC and GGA
uint8_t fields[] = {CAS_NEMA_RMC, CAS_NEMA_GGA};
for (unsigned int i = 0; i < sizeof(fields); i++) {
// Construct a CAS-CFG-MSG packet
uint8_t cas_cfg_msg_packet[] = {0x4e, fields[i], 0x01, 0x00};
msglen = makeCASPacket(0x06, 0x01, sizeof(cas_cfg_msg_packet), cas_cfg_msg_packet);
_serial_gps->write(UBXscratch, msglen);
if (getACKCas(0x06, 0x01, 250) != GNSS_RESPONSE_OK) {
LOG_WARN("ATGM336H: Could not enable NMEA MSG: %d", fields[i]);
}
}
} else if (gnssModel == GNSS_MODEL_UC6580) {
// The Unicore UC6580 can use a lot of sat systems, enable it to
// use GPS L1 & L5 + BDS B1I & B2a + GLONASS L1 + GALILEO E1 & E5a + SBAS + QZSS
// This will reset the receiver, so wait a bit afterwards
// The paranoid will wait for the OK*04 confirmation response after each command.
_serial_gps->write("$CFGSYS,h35155\r\n");
delay(750);
// Must be done after the CFGSYS command
// Turn off GSV messages, we don't really care about which and where the sats are, maybe someday.
_serial_gps->write("$CFGMSG,0,3,0\r\n");
delay(250);
// Turn off GSA messages, TinyGPS++ doesn't use this message.
_serial_gps->write("$CFGMSG,0,2,0\r\n");
delay(250);
// Turn off NOTICE __TXT messages, these may provide Unicore some info but we don't care.
_serial_gps->write("$CFGMSG,6,0,0\r\n");
delay(250);
_serial_gps->write("$CFGMSG,6,1,0\r\n");
delay(250);
} else if (IS_ONE_OF(gnssModel, GNSS_MODEL_AG3335, GNSS_MODEL_AG3352)) {
_serial_gps->write("$PAIR066,1,0,1,0,0,1*3B\r\n"); // Enable GPS+GALILEO+NAVIC
// Configure NMEA (sentences will output once per fix)
_serial_gps->write("$PAIR062,0,1*3F\r\n"); // GGA ON
_serial_gps->write("$PAIR062,1,0*3F\r\n"); // GLL OFF
_serial_gps->write("$PAIR062,2,0*3C\r\n"); // GSA OFF
_serial_gps->write("$PAIR062,3,0*3D\r\n"); // GSV OFF
_serial_gps->write("$PAIR062,4,1*3B\r\n"); // RMC ON
_serial_gps->write("$PAIR062,5,0*3B\r\n"); // VTG OFF
_serial_gps->write("$PAIR062,6,0*38\r\n"); // ZDA ON
delay(250);
_serial_gps->write("$PAIR513*3D\r\n"); // save configuration
} else if (gnssModel == GNSS_MODEL_UBLOX6) {
clearBuffer();
SEND_UBX_PACKET(0x06, 0x02, _message_DISABLE_TXT_INFO, "disable text info messages", 500);
SEND_UBX_PACKET(0x06, 0x39, _message_JAM_6_7, "enable interference resistance", 500);
SEND_UBX_PACKET(0x06, 0x23, _message_NAVX5, "configure NAVX5 settings", 500);
// Turn off unwanted NMEA messages, set update rate
SEND_UBX_PACKET(0x06, 0x08, _message_1HZ, "set GPS update rate", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GLL, "disable NMEA GLL", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GSA, "enable NMEA GSA", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GSV, "disable NMEA GSV", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_VTG, "disable NMEA VTG", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_RMC, "enable NMEA RMC", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GGA, "enable NMEA GGA", 500);
clearBuffer();
SEND_UBX_PACKET(0x06, 0x11, _message_CFG_RXM_ECO, "enable powersave ECO mode for Neo-6", 500);
SEND_UBX_PACKET(0x06, 0x3B, _message_CFG_PM2, "enable powersave details for GPS", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_AID, "disable UBX-AID", 500);
msglen = makeUBXPacket(0x06, 0x09, sizeof(_message_SAVE), _message_SAVE);
_serial_gps->write(UBXscratch, msglen);
if (getACK(0x06, 0x09, 2000) != GNSS_RESPONSE_OK) {
LOG_WARN("Unable to save GNSS module config");
} else {
LOG_INFO("GNSS module config saved!");
}
} else if (IS_ONE_OF(gnssModel, GNSS_MODEL_UBLOX7, GNSS_MODEL_UBLOX8, GNSS_MODEL_UBLOX9)) {
if (gnssModel == GNSS_MODEL_UBLOX7) {
LOG_DEBUG("Set GPS+SBAS");
msglen = makeUBXPacket(0x06, 0x3e, sizeof(_message_GNSS_7), _message_GNSS_7);
_serial_gps->write(UBXscratch, msglen);
} else { // 8,9
msglen = makeUBXPacket(0x06, 0x3e, sizeof(_message_GNSS_8), _message_GNSS_8);
_serial_gps->write(UBXscratch, msglen);
}
if (getACK(0x06, 0x3e, 800) == GNSS_RESPONSE_NAK) {
// It's not critical if the module doesn't acknowledge this configuration.
LOG_DEBUG("reconfigure GNSS - defaults maintained. Is this module GPS-only?");
} else {
if (gnssModel == GNSS_MODEL_UBLOX7) {
LOG_INFO("GPS+SBAS configured");
} else { // 8,9
LOG_INFO("GPS+SBAS+GLONASS+Galileo configured");
}
// Documentation say, we need wait atleast 0.5s after reconfiguration of GNSS module, before sending next
// commands for the M8 it tends to be more... 1 sec should be enough ;>)
delay(1000);
}
// Disable Text Info messages //6,7,8,9
clearBuffer();
SEND_UBX_PACKET(0x06, 0x02, _message_DISABLE_TXT_INFO, "disable text info messages", 500);
if (gnssModel == GNSS_MODEL_UBLOX8) { // 8
clearBuffer();
SEND_UBX_PACKET(0x06, 0x39, _message_JAM_8, "enable interference resistance", 500);
clearBuffer();
SEND_UBX_PACKET(0x06, 0x23, _message_NAVX5_8, "configure NAVX5_8 settings", 500);
} else { // 6,7,9
SEND_UBX_PACKET(0x06, 0x39, _message_JAM_6_7, "enable interference resistance", 500);
SEND_UBX_PACKET(0x06, 0x23, _message_NAVX5, "configure NAVX5 settings", 500);
}
// Turn off unwanted NMEA messages, set update rate
SEND_UBX_PACKET(0x06, 0x08, _message_1HZ, "set GPS update rate", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GLL, "disable NMEA GLL", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GSA, "enable NMEA GSA", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GSV, "disable NMEA GSV", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_VTG, "disable NMEA VTG", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_RMC, "enable NMEA RMC", 500);
SEND_UBX_PACKET(0x06, 0x01, _message_GGA, "enable NMEA GGA", 500);
if (ublox_info.protocol_version >= 18) {
clearBuffer();
SEND_UBX_PACKET(0x06, 0x86, _message_PMS, "enable powersave for GPS", 500);
SEND_UBX_PACKET(0x06, 0x3B, _message_CFG_PM2, "enable powersave details for GPS", 500);
// For M8 we want to enable NMEA vserion 4.10 so we can see the additional sats.
if (gnssModel == GNSS_MODEL_UBLOX8) {
clearBuffer();
SEND_UBX_PACKET(0x06, 0x17, _message_NMEA, "enable NMEA 4.10", 500);
}
} else {
SEND_UBX_PACKET(0x06, 0x11, _message_CFG_RXM_PSM, "enable powersave mode for GPS", 500);
SEND_UBX_PACKET(0x06, 0x3B, _message_CFG_PM2, "enable powersave details for GPS", 500);
}
msglen = makeUBXPacket(0x06, 0x09, sizeof(_message_SAVE), _message_SAVE);
_serial_gps->write(UBXscratch, msglen);
if (getACK(0x06, 0x09, 2000) != GNSS_RESPONSE_OK) {
LOG_WARN("Unable to save GNSS module config");
} else {
LOG_INFO("GNSS module configuration saved!");
}
} else if (gnssModel == GNSS_MODEL_UBLOX10) {
delay(1000);
clearBuffer();
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_NMEA_RAM, "disable NMEA messages in M10 RAM", 300);
delay(750);
clearBuffer();
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_NMEA_BBR, "disable NMEA messages in M10 BBR", 300);
delay(750);
clearBuffer();
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_TXT_INFO_RAM, "disable Info messages for M10 GPS RAM", 300);
delay(750);
// Next disable Info txt messages in BBR layer
clearBuffer();
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_TXT_INFO_BBR, "disable Info messages for M10 GPS BBR", 300);
delay(750);
// Do M10 configuration for Power Management.
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_PM_RAM, "enable powersave for M10 GPS RAM", 300);
delay(750);
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_PM_BBR, "enable powersave for M10 GPS BBR", 300);
delay(750);
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_ITFM_RAM, "enable jam detection M10 GPS RAM", 300);
delay(750);
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_ITFM_BBR, "enable jam detection M10 GPS BBR", 300);
delay(750);
// Here is where the init commands should go to do further M10 initialization.
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_SBAS_RAM, "disable SBAS M10 GPS RAM", 300);
delay(750); // will cause a receiver restart so wait a bit
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_DISABLE_SBAS_BBR, "disable SBAS M10 GPS BBR", 300);
delay(750); // will cause a receiver restart so wait a bit
// Done with initialization, Now enable wanted NMEA messages in BBR layer so they will survive a periodic
// sleep.
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_ENABLE_NMEA_BBR, "enable messages for M10 GPS BBR", 300);
delay(750);
// Next enable wanted NMEA messages in RAM layer
SEND_UBX_PACKET(0x06, 0x8A, _message_VALSET_ENABLE_NMEA_RAM, "enable messages for M10 GPS RAM", 500);
delay(750);
// As the M10 has no flash, the best we can do to preserve the config is to set it in RAM and BBR.
// BBR will survive a restart, and power off for a while, but modules with small backup
// batteries or super caps will not retain the config for a long power off time.
msglen = makeUBXPacket(0x06, 0x09, sizeof(_message_SAVE_10), _message_SAVE_10);
_serial_gps->write(UBXscratch, msglen);
if (getACK(0x06, 0x09, 2000) != GNSS_RESPONSE_OK) {
LOG_WARN("Unable to save GNSS module config");
} else {
LOG_INFO("GNSS module configuration saved!");
}
}
didSerialInit = true;
}
notifyDeepSleepObserver.observe(&notifyDeepSleep);
return true;
}
GPS::~GPS()
{
// we really should unregister our sleep observer
notifyDeepSleepObserver.unobserve(&notifyDeepSleep);
}
// Put the GPS hardware into a specified state
void GPS::setPowerState(GPSPowerState newState, uint32_t sleepTime)
{
// Update the stored GPSPowerstate, and create local copies
GPSPowerState oldState = powerState;
powerState = newState;
LOG_INFO("GPS power state move from %s to %s", getGPSPowerStateString(oldState), getGPSPowerStateString(newState));
#ifdef HELTEC_MESH_NODE_T114
if ((oldState == GPS_OFF || oldState == GPS_HARDSLEEP) && (newState != GPS_OFF && newState != GPS_HARDSLEEP)) {
_serial_gps->begin(serialSpeeds[speedSelect]);
} else if ((newState == GPS_OFF || newState == GPS_HARDSLEEP) && (oldState != GPS_OFF && oldState != GPS_HARDSLEEP)) {
_serial_gps->end();
}
#endif
switch (newState) {
case GPS_ACTIVE:
case GPS_IDLE:
if (oldState == GPS_ACTIVE || oldState == GPS_IDLE) // If hardware already awake, no changes needed
break;
if (oldState != GPS_ACTIVE && oldState != GPS_IDLE) // If hardware just waking now, clear buffer
clearBuffer();
powerMon->setState(meshtastic_PowerMon_State_GPS_Active); // Report change for power monitoring (during testing)
writePinEN(true); // Power (EN pin): on
setPowerPMU(true); // Power (PMU): on
writePinStandby(false); // Standby (pin): awake (not standby)
setPowerUBLOX(true); // Standby (UBLOX): awake
#ifdef GNSS_AIROHA
lastFixStartMsec = 0;
#endif
break;
case GPS_SOFTSLEEP:
powerMon->clearState(meshtastic_PowerMon_State_GPS_Active); // Report change for power monitoring (during testing)
writePinEN(true); // Power (EN pin): on
setPowerPMU(true); // Power (PMU): on
writePinStandby(true); // Standby (pin): asleep (not awake)
setPowerUBLOX(false, sleepTime); // Standby (UBLOX): asleep, timed
break;
case GPS_HARDSLEEP:
powerMon->clearState(meshtastic_PowerMon_State_GPS_Active); // Report change for power monitoring (during testing)
writePinEN(false); // Power (EN pin): off
setPowerPMU(false); // Power (PMU): off
writePinStandby(true); // Standby (pin): asleep (not awake)
setPowerUBLOX(false, sleepTime); // Standby (UBLOX): asleep, timed
#ifdef GNSS_AIROHA
if (config.position.gps_update_interval * 1000 >= GPS_FIX_HOLD_TIME * 2) {
digitalWrite(PIN_GPS_EN, LOW);
}
#endif
break;
case GPS_OFF:
assert(sleepTime == 0); // This is an indefinite sleep
powerMon->clearState(meshtastic_PowerMon_State_GPS_Active); // Report change for power monitoring (during testing)
writePinEN(false); // Power (EN pin): off
setPowerPMU(false); // Power (PMU): off
writePinStandby(true); // Standby (pin): asleep
setPowerUBLOX(false, 0); // Standby (UBLOX): asleep, indefinitely
#ifdef GNSS_AIROHA
if (config.position.gps_update_interval * 1000 >= GPS_FIX_HOLD_TIME * 2) {
digitalWrite(PIN_GPS_EN, LOW);
}
#endif
break;
}
}
// Set power with EN pin, if relevant
void GPS::writePinEN(bool on)
{
// Abort: if conflict with Canned Messages when using Wisblock(?)
if ((HW_VENDOR == meshtastic_HardwareModel_RAK4631 || HW_VENDOR == meshtastic_HardwareModel_WISMESH_TAP) &&
(rotaryEncoderInterruptImpl1 || upDownInterruptImpl1))
return;
// Write and log
enablePin->set(on);
#ifdef GPS_DEBUG
LOG_DEBUG("Pin EN %s", on == HIGH ? "HI" : "LOW");
#endif
}
// Set the value of the STANDBY pin, if relevant
// true for standby state, false for awake
void GPS::writePinStandby(bool standby)
{
#ifdef PIN_GPS_STANDBY // Specifically the standby pin for L76B, L76K and clones
// Determine the new value for the pin
// Normally: active HIGH for awake
#ifdef PIN_GPS_STANDBY_INVERTED
bool val = standby;
#else
bool val = !standby;
#endif
// Write and log
pinMode(PIN_GPS_STANDBY, OUTPUT);
digitalWrite(PIN_GPS_STANDBY, val);
#ifdef GPS_DEBUG
LOG_DEBUG("Pin STANDBY %s", val == HIGH ? "HI" : "LOW");
#endif
#endif
}
// Enable / Disable GPS with PMU, if present
void GPS::setPowerPMU(bool on)
{
// We only have PMUs on the T-Beam, and that board has a tiny battery to save GPS ephemera,
// so treat as a standby.
#ifdef HAS_PMU
// Abort: if no PMU
if (!pmu_found)
return;
// Abort: if PMU not initialized
if (!PMU)
return;
uint8_t model = PMU->getChipModel();
if (model == XPOWERS_AXP2101) {
if (HW_VENDOR == meshtastic_HardwareModel_TBEAM) {
// t-beam v1.2 GNSS power channel
on ? PMU->enablePowerOutput(XPOWERS_ALDO3) : PMU->disablePowerOutput(XPOWERS_ALDO3);
} else if (HW_VENDOR == meshtastic_HardwareModel_LILYGO_TBEAM_S3_CORE) {
// t-beam-s3-core GNSS power channel
on ? PMU->enablePowerOutput(XPOWERS_ALDO4) : PMU->disablePowerOutput(XPOWERS_ALDO4);
}
} else if (model == XPOWERS_AXP192) {
// t-beam v1.1 GNSS power channel
on ? PMU->enablePowerOutput(XPOWERS_LDO3) : PMU->disablePowerOutput(XPOWERS_LDO3);
}
#ifdef GPS_DEBUG
LOG_DEBUG("PMU %s", on ? "on" : "off");
#endif
#endif
}
// Set UBLOX power, if relevant
void GPS::setPowerUBLOX(bool on, uint32_t sleepMs)
{
// Abort: if not UBLOX hardware
if (!IS_ONE_OF(gnssModel, GNSS_MODEL_UBLOX6, GNSS_MODEL_UBLOX7, GNSS_MODEL_UBLOX8, GNSS_MODEL_UBLOX9, GNSS_MODEL_UBLOX10))
return;
// If waking
if (on) {
gps->_serial_gps->write(0xFF);
clearBuffer(); // This often returns old data, so drop it
}
// If putting to sleep
else {
uint8_t msglen;
// If we're being asked to sleep indefinitely, make *sure* we're awake first, to process the new sleep command
if (sleepMs == 0) {
setPowerUBLOX(true);
delay(500);
}
// Determine hardware version
if (gnssModel != GNSS_MODEL_UBLOX10) {
// Encode the sleep time in millis into the packet
for (int i = 0; i < 4; i++)
_message_PMREQ[0 + i] = sleepMs >> (i * 8);
// Record the message length
msglen = gps->makeUBXPacket(0x02, 0x41, sizeof(_message_PMREQ), _message_PMREQ);
} else {
// Encode the sleep time in millis into the packet
for (int i = 0; i < 4; i++)
_message_PMREQ_10[4 + i] = sleepMs >> (i * 8);
// Record the message length
msglen = gps->makeUBXPacket(0x02, 0x41, sizeof(_message_PMREQ_10), _message_PMREQ_10);
}
// Send the UBX packet
gps->_serial_gps->write(gps->UBXscratch, msglen);
#ifdef GPS_DEBUG
LOG_DEBUG("UBLOX: sleep for %dmS", sleepMs);
#endif
}
}
/// Record that we have a GPS
void GPS::setConnected()
{
if (!hasGPS) {
hasGPS = true;
shouldPublish = true;
}
}
// We want a GPS lock. Wake the hardware
void GPS::up()
{
scheduling.informSearching();
setPowerState(GPS_ACTIVE);
}
// We've got a GPS lock. Enter a low power state, potentially.
void GPS::down()
{
scheduling.informGotLock();
uint32_t predictedSearchDuration = scheduling.predictedSearchDurationMs();
uint32_t sleepTime = scheduling.msUntilNextSearch();
uint32_t updateInterval = Default::getConfiguredOrDefaultMs(config.position.gps_update_interval);
LOG_DEBUG("%us until next search", sleepTime / 1000);
// If update interval less than 10 seconds, no attempt to sleep
if (updateInterval <= 10 * 1000UL || sleepTime == 0)
setPowerState(GPS_IDLE);
else {
// Check whether the GPS hardware is capable of GPS_SOFTSLEEP
// If not, fallback to GPS_HARDSLEEP instead
bool softsleepSupported = false;
// U-blox is supported via PMREQ
if (IS_ONE_OF(gnssModel, GNSS_MODEL_UBLOX6, GNSS_MODEL_UBLOX7, GNSS_MODEL_UBLOX8, GNSS_MODEL_UBLOX9, GNSS_MODEL_UBLOX10))
softsleepSupported = true;
#ifdef PIN_GPS_STANDBY // L76B, L76K and clones have a standby pin
softsleepSupported = true;
#endif
if (softsleepSupported) {
// How long does gps_update_interval need to be, for GPS_HARDSLEEP to become more efficient than
// GPS_SOFTSLEEP? Heuristic equation. A compromise manually fitted to power observations from U-blox NEO-6M
// and M10050 https://www.desmos.com/calculator/6gvjghoumr This is not particularly accurate, but probably an
// improvement over a single, fixed threshold
uint32_t hardsleepThreshold = (2750 * pow(predictedSearchDuration / 1000, 1.22));
LOG_DEBUG("gps_update_interval >= %us needed to justify hardsleep", hardsleepThreshold / 1000);
// If update interval too short: softsleep (if supported by hardware)
if (updateInterval < hardsleepThreshold) {
setPowerState(GPS_SOFTSLEEP, sleepTime);
return;
}
}
// If update interval long enough (or softsleep unsupported): hardsleep instead
setPowerState(GPS_HARDSLEEP, sleepTime);
}
}
void GPS::publishUpdate()
{
if (shouldPublish) {
shouldPublish = false;
// In debug logs, identify position by @timestamp:stage (stage 2 = publish)
LOG_DEBUG("Publish pos@%x:2, hasVal=%d, Sats=%d, GPSlock=%d", p.timestamp, hasValidLocation, p.sats_in_view, hasLock());
// Notify any status instances that are observing us
const meshtastic::GPSStatus status = meshtastic::GPSStatus(hasValidLocation, isConnected(), isPowerSaving(), p);
newStatus.notifyObservers(&status);
if (config.position.gps_mode == meshtastic_Config_PositionConfig_GpsMode_ENABLED) {
positionModule->handleNewPosition();
}
}
}
int32_t GPS::runOnce()
{
if (!GPSInitFinished) {
if (!_serial_gps || config.position.gps_mode == meshtastic_Config_PositionConfig_GpsMode_NOT_PRESENT) {
LOG_INFO("GPS set to not-present. Skip probe");
return disable();
}
if (!setup())
return 2000; // Setup failed, re-run in two seconds
// We have now loaded our saved preferences from flash
if (config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED) {
return disable();
}
GPSInitFinished = true;
publishUpdate();
}
// Repeaters have no need for GPS
if (config.device.role == meshtastic_Config_DeviceConfig_Role_REPEATER) {
return disable();
}
if (whileActive()) {
// if we have received valid NMEA claim we are connected
setConnected();
}
// If we're due for an update, wake the GPS
if (!config.position.fixed_position && powerState != GPS_ACTIVE && scheduling.isUpdateDue())
up();
// If we've already set time from the GPS, no need to ask the GPS
bool gotTime = (getRTCQuality() >= RTCQualityGPS);
if (!gotTime && lookForTime()) { // Note: we count on this && short-circuiting and not resetting the RTC time
gotTime = true;
shouldPublish = true;
}
bool gotLoc = lookForLocation();
if (gotLoc && !hasValidLocation) { // declare that we have location ASAP
LOG_DEBUG("hasValidLocation RISING EDGE");
hasValidLocation = true;
shouldPublish = true;
}
bool tooLong = scheduling.searchedTooLong();
if (tooLong)
LOG_WARN("Couldn't publish a valid location: didn't get a GPS lock in time");
// Once we get a location we no longer desperately want an update
if ((gotLoc && gotTime) || tooLong) {
if (tooLong) {
// we didn't get a location during this ack window, therefore declare loss of lock
if (hasValidLocation) {
LOG_DEBUG("hasValidLocation FALLING EDGE");
}
p = meshtastic_Position_init_default;
hasValidLocation = false;
}
down();
shouldPublish = true; // publish our update for this just finished acquisition window
}
// If state has changed do a publish
publishUpdate();
if (config.position.fixed_position == true && hasValidLocation)
return disable(); // This should trigger when we have a fixed position, and get that first position
// 9600bps is approx 1 byte per msec, so considering our buffer size we never need to wake more often than 200ms
// if not awake we can run super infrquently (once every 5 secs?) to see if we need to wake.
return (powerState == GPS_ACTIVE) ? GPS_THREAD_INTERVAL : 5000;
}
// clear the GPS rx/tx buffer as quickly as possible
void GPS::clearBuffer()
{
#ifdef ARCH_ESP32
_serial_gps->flush(false);
#else
int x = _serial_gps->available();
while (x--)
_serial_gps->read();
#endif
}
/// Prepare the GPS for the cpu entering deep or light sleep, expect to be gone for at least 100s of msecs
int GPS::prepareDeepSleep(void *unused)
{
LOG_INFO("GPS deep sleep!");
disable();
return 0;
}
static const char *PROBE_MESSAGE = "Trying %s (%s)...";
static const char *DETECTED_MESSAGE = "%s detected";
#define PROBE_SIMPLE(CHIP, TOWRITE, RESPONSE, DRIVER, TIMEOUT, ...) \
do { \
LOG_DEBUG(PROBE_MESSAGE, TOWRITE, CHIP); \
clearBuffer(); \
_serial_gps->write(TOWRITE "\r\n"); \
if (getACK(RESPONSE, TIMEOUT) == GNSS_RESPONSE_OK) { \
LOG_INFO(DETECTED_MESSAGE, CHIP); \
return DRIVER; \
} \
} while (0)
#define PROBE_FAMILY(FAMILY_NAME, COMMAND, RESPONSE_MAP, TIMEOUT) \
do { \
LOG_DEBUG(PROBE_MESSAGE, COMMAND, FAMILY_NAME); \
clearBuffer(); \
_serial_gps->write(COMMAND "\r\n"); \
GnssModel_t detectedDriver = getProbeResponse(TIMEOUT, RESPONSE_MAP); \
if (detectedDriver != GNSS_MODEL_UNKNOWN) { \
return detectedDriver; \
} \
} while (0)
GnssModel_t GPS::probe(int serialSpeed)
{
#if defined(ARCH_NRF52) || defined(ARCH_PORTDUINO) || defined(ARCH_STM32WL)
_serial_gps->end();
_serial_gps->begin(serialSpeed);
#elif defined(ARCH_RP2040)
_serial_gps->end();
_serial_gps->setFIFOSize(256);
_serial_gps->begin(serialSpeed);
#else
if (_serial_gps->baudRate() != serialSpeed) {
LOG_DEBUG("Set Baud to %i", serialSpeed);
_serial_gps->updateBaudRate(serialSpeed);
}
#endif
memset(&ublox_info, 0, sizeof(ublox_info));
uint8_t buffer[768] = {0};
delay(100);
// Close all NMEA sentences, valid for L76K, ATGM336H (and likely other AT6558 devices)
_serial_gps->write("$PCAS03,0,0,0,0,0,0,0,0,0,0,,,0,0*02\r\n");
delay(20);
// Close NMEA sequences on Ublox
_serial_gps->write("$PUBX,40,GLL,0,0,0,0,0,0*5C\r\n");
_serial_gps->write("$PUBX,40,GSV,0,0,0,0,0,0*59\r\n");
_serial_gps->write("$PUBX,40,VTG,0,0,0,0,0,0*5E\r\n");
delay(20);
// Unicore UFirebirdII Series: UC6580, UM620, UM621, UM670A, UM680A, or UM681A
std::vector<ChipInfo> unicore = {{"UC6580", "UC6580", GNSS_MODEL_UC6580}, {"UM600", "UM600", GNSS_MODEL_UC6580}};
PROBE_FAMILY("Unicore Family", "$PDTINFO", unicore, 500);
std::vector<ChipInfo> atgm = {
{"ATGM336H", "$GPTXT,01,01,02,HW=ATGM336H", GNSS_MODEL_ATGM336H},
/* ATGM332D series (-11(GPS), -21(BDS), -31(GPS+BDS), -51(GPS+GLONASS), -71-0(GPS+BDS+GLONASS)) based on AT6558 */
{"ATGM332D", "$GPTXT,01,01,02,HW=ATGM332D", GNSS_MODEL_ATGM336H}};
PROBE_FAMILY("ATGM33xx Family", "$PCAS06,1*1A", atgm, 500);
/* Airoha (Mediatek) AG3335A/M/S, A3352Q, Quectel L89 2.0, SimCom SIM65M */
_serial_gps->write("$PAIR062,2,0*3C\r\n"); // GSA OFF to reduce volume
_serial_gps->write("$PAIR062,3,0*3D\r\n"); // GSV OFF to reduce volume
_serial_gps->write("$PAIR513*3D\r\n"); // save configuration
std::vector<ChipInfo> airoha = {{"AG3335", "$PAIR021,AG3335", GNSS_MODEL_AG3335},
{"AG3352", "$PAIR021,AG3352", GNSS_MODEL_AG3352},
{"RYS3520", "$PAIR021,REYAX_RYS3520_V2", GNSS_MODEL_AG3352}};
PROBE_FAMILY("Airoha Family", "$PAIR021*39", airoha, 1000);
PROBE_SIMPLE("LC86", "$PQTMVERNO*58", "$PQTMVERNO,LC86", GNSS_MODEL_AG3352, 500);
PROBE_SIMPLE("L76K", "$PCAS06,0*1B", "$GPTXT,01,01,02,SW=", GNSS_MODEL_MTK, 500);
// Close all NMEA sentences, valid for MTK3333 and MTK3339 platforms
_serial_gps->write("$PMTK514,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*2E\r\n");
delay(20);
std::vector<ChipInfo> mtk = {{"L76B", "Quectel-L76B", GNSS_MODEL_MTK_L76B},
{"PA1616S", "1616S", GNSS_MODEL_MTK_PA1616S},
{"LS20031", "MC-1513", GNSS_MODEL_MTK_L76B}};
PROBE_FAMILY("MTK Family", "$PMTK605*31", mtk, 500);
uint8_t cfg_rate[] = {0xB5, 0x62, 0x06, 0x08, 0x00, 0x00, 0x00, 0x00};
UBXChecksum(cfg_rate, sizeof(cfg_rate));
clearBuffer();
_serial_gps->write(cfg_rate, sizeof(cfg_rate));
// Check that the returned response class and message ID are correct
GPS_RESPONSE response = getACK(0x06, 0x08, 750);
if (response == GNSS_RESPONSE_NONE) {
LOG_WARN("No GNSS Module (baudrate %d)", serialSpeed);
return GNSS_MODEL_UNKNOWN;
} else if (response == GNSS_RESPONSE_FRAME_ERRORS) {
LOG_INFO("UBlox Frame Errors (baudrate %d)", serialSpeed);
}
memset(buffer, 0, sizeof(buffer));
uint8_t _message_MONVER[8] = {
0xB5, 0x62, // Sync message for UBX protocol
0x0A, 0x04, // Message class and ID (UBX-MON-VER)
0x00, 0x00, // Length of payload (we're asking for an answer, so no payload)
0x00, 0x00 // Checksum
};
// Get Ublox gnss module hardware and software info
UBXChecksum(_message_MONVER, sizeof(_message_MONVER));
clearBuffer();
_serial_gps->write(_message_MONVER, sizeof(_message_MONVER));
uint16_t len = getACK(buffer, sizeof(buffer), 0x0A, 0x04, 1200);
if (len) {
uint16_t position = 0;
for (int i = 0; i < 30; i++) {
ublox_info.swVersion[i] = buffer[position];
position++;
}
for (int i = 0; i < 10; i++) {
ublox_info.hwVersion[i] = buffer[position];
position++;
}
while (len >= position + 30) {
for (int i = 0; i < 30; i++) {
ublox_info.extension[ublox_info.extensionNo][i] = buffer[position];
position++;
}
ublox_info.extensionNo++;
if (ublox_info.extensionNo > 9)
break;
}
LOG_DEBUG("Module Info : ");
LOG_DEBUG("Soft version: %s", ublox_info.swVersion);
LOG_DEBUG("Hard version: %s", ublox_info.hwVersion);
LOG_DEBUG("Extensions:%d", ublox_info.extensionNo);
for (int i = 0; i < ublox_info.extensionNo; i++) {
LOG_DEBUG(" %s", ublox_info.extension[i]);
}
memset(buffer, 0, sizeof(buffer));
// tips: extensionNo field is 0 on some 6M GNSS modules
for (int i = 0; i < ublox_info.extensionNo; ++i) {
if (!strncmp(ublox_info.extension[i], "MOD=", 4)) {
strncpy((char *)buffer, &(ublox_info.extension[i][4]), sizeof(buffer));
} else if (!strncmp(ublox_info.extension[i], "PROTVER", 7)) {
char *ptr = nullptr;
memset(buffer, 0, sizeof(buffer));
strncpy((char *)buffer, &(ublox_info.extension[i][8]), sizeof(buffer));
LOG_DEBUG("Protocol Version:%s", (char *)buffer);
if (strlen((char *)buffer)) {
ublox_info.protocol_version = strtoul((char *)buffer, &ptr, 10);
LOG_DEBUG("ProtVer=%d", ublox_info.protocol_version);
} else {
ublox_info.protocol_version = 0;
}
}
}
if (strncmp(ublox_info.hwVersion, "00040007", 8) == 0) {
LOG_INFO(DETECTED_MESSAGE, "U-blox 6", "6");
return GNSS_MODEL_UBLOX6;
} else if (strncmp(ublox_info.hwVersion, "00070000", 8) == 0) {
LOG_INFO(DETECTED_MESSAGE, "U-blox 7", "7");
return GNSS_MODEL_UBLOX7;
} else if (strncmp(ublox_info.hwVersion, "00080000", 8) == 0) {
LOG_INFO(DETECTED_MESSAGE, "U-blox 8", "8");
return GNSS_MODEL_UBLOX8;
} else if (strncmp(ublox_info.hwVersion, "00190000", 8) == 0) {
LOG_INFO(DETECTED_MESSAGE, "U-blox 9", "9");
return GNSS_MODEL_UBLOX9;
} else if (strncmp(ublox_info.hwVersion, "000A0000", 8) == 0) {
LOG_INFO(DETECTED_MESSAGE, "U-blox 10", "10");
return GNSS_MODEL_UBLOX10;
}
}
LOG_WARN("No GNSS Module (baudrate %d)", serialSpeed);
return GNSS_MODEL_UNKNOWN;
}
GnssModel_t GPS::getProbeResponse(unsigned long timeout, const std::vector<ChipInfo> &responseMap)
{
String response = "";
unsigned long start = millis();
while (millis() - start < timeout) {
if (_serial_gps->available()) {
response += (char)_serial_gps->read();
if (response.endsWith(",") || response.endsWith("\r\n")) {
#ifdef GPS_DEBUG
LOG_DEBUG(response.c_str());
#endif
// check if we can see our chips
for (const auto &chipInfo : responseMap) {
if (strstr(response.c_str(), chipInfo.detectionString.c_str()) != nullptr) {
LOG_INFO("%s detected", chipInfo.chipName.c_str());
return chipInfo.driver;
}
}
}
if (response.endsWith("\r\n")) {
response.trim();
response = ""; // Reset the response string for the next potential message
}
}
}
#ifdef GPS_DEBUG
LOG_DEBUG(response.c_str());
#endif
return GNSS_MODEL_UNKNOWN; // Return empty string on timeout
}
GPS *GPS::createGps()
{
int8_t _rx_gpio = config.position.rx_gpio;
int8_t _tx_gpio = config.position.tx_gpio;
int8_t _en_gpio = config.position.gps_en_gpio;
#if HAS_GPS && !defined(ARCH_ESP32)
_rx_gpio = 1; // We only specify GPS serial ports on ESP32. Otherwise, these are just flags.
_tx_gpio = 1;
#endif
#if defined(GPS_RX_PIN)
if (!_rx_gpio)
_rx_gpio = GPS_RX_PIN;
#endif
#if defined(GPS_TX_PIN)
if (!_tx_gpio)
_tx_gpio = GPS_TX_PIN;
#endif
#if defined(PIN_GPS_EN)
if (!_en_gpio)
_en_gpio = PIN_GPS_EN;
#endif
#ifdef ARCH_PORTDUINO
if (!settingsMap[has_gps])
return nullptr;
#endif
if (!_rx_gpio || !_serial_gps) // Configured to have no GPS at all
return nullptr;
GPS *new_gps = new GPS;
new_gps->rx_gpio = _rx_gpio;
new_gps->tx_gpio = _tx_gpio;
GpioVirtPin *virtPin = new GpioVirtPin();
new_gps->enablePin = virtPin; // Always at least populate a virtual pin
if (_en_gpio) {
GpioPin *p = new GpioHwPin(_en_gpio);
if (!GPS_EN_ACTIVE) { // Need to invert the pin before hardware
new GpioNotTransformer(
virtPin,
p); // We just leave this created object on the heap so it can stay watching virtPin and driving en_gpio
} else {
new GpioUnaryTransformer(
virtPin,
p); // We just leave this created object on the heap so it can stay watching virtPin and driving en_gpio
}
}
#ifdef PIN_GPS_PPS
// pulse per second
pinMode(PIN_GPS_PPS, INPUT);
#endif
// Currently disabled per issue #525 (TinyGPS++ crash bug)
// when fixed upstream, can be un-disabled to enable 3D FixType and PDOP
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
// see NMEAGPS.h
gsafixtype.begin(reader, NMEA_MSG_GXGSA, 2);
gsapdop.begin(reader, NMEA_MSG_GXGSA, 15);
LOG_DEBUG("Use " NMEA_MSG_GXGSA " for 3DFIX and PDOP");
#endif
// Make sure the GPS is awake before performing any init.
new_gps->up();
#ifdef PIN_GPS_RESET
pinMode(PIN_GPS_RESET, OUTPUT);
digitalWrite(PIN_GPS_RESET, GPS_RESET_MODE); // assert for 10ms
delay(10);
digitalWrite(PIN_GPS_RESET, !GPS_RESET_MODE);
#endif
if (_serial_gps) {
#ifdef ARCH_ESP32
// In esp32 framework, setRxBufferSize needs to be initialized before Serial
_serial_gps->setRxBufferSize(SERIAL_BUFFER_SIZE); // the default is 256
#endif
// ESP32 has a special set of parameters vs other arduino ports
#if defined(ARCH_ESP32)
LOG_DEBUG("Use GPIO%d for GPS RX", new_gps->rx_gpio);
LOG_DEBUG("Use GPIO%d for GPS TX", new_gps->tx_gpio);
_serial_gps->begin(GPS_BAUDRATE, SERIAL_8N1, new_gps->rx_gpio, new_gps->tx_gpio);
#elif defined(ARCH_RP2040)
_serial_gps->setFIFOSize(256);
_serial_gps->begin(GPS_BAUDRATE);
#else
_serial_gps->begin(GPS_BAUDRATE);
#endif
}
return new_gps;
}
static int32_t toDegInt(RawDegrees d)
{
int32_t degMult = 10000000; // 1e7
int32_t r = d.deg * degMult + d.billionths / 100;
if (d.negative)
r *= -1;
return r;
}
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a new location
*/
bool GPS::lookForTime()
{
#ifdef GNSS_AIROHA
uint8_t fix = reader.fixQuality();
if (fix > 0) {
if (lastFixStartMsec > 0) {
if (Throttle::isWithinTimespanMs(lastFixStartMsec, GPS_FIX_HOLD_TIME)) {
return false;
} else {
clearBuffer();
}
} else {
lastFixStartMsec = millis();
return false;
}
} else {
return false;
}
#endif
auto ti = reader.time;
auto d = reader.date;
if (ti.isValid() && d.isValid()) { // Note: we don't check for updated, because we'll only be called if needed
/* Convert to unix time
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January 1,
1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
*/
struct tm t;
t.tm_sec = ti.second() + round(ti.age() / 1000);
t.tm_min = ti.minute();
t.tm_hour = ti.hour();
t.tm_mday = d.day();
t.tm_mon = d.month() - 1;
t.tm_year = d.year() - 1900;
t.tm_isdst = false;
if (t.tm_mon > -1) {
LOG_DEBUG("NMEA GPS time %02d-%02d-%02d %02d:%02d:%02d age %d", d.year(), d.month(), t.tm_mday, t.tm_hour, t.tm_min,
t.tm_sec, ti.age());
perhapsSetRTC(RTCQualityGPS, t);
return true;
} else
return false;
} else
return false;
}
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a new location
*/
bool GPS::lookForLocation()
{
#ifdef GNSS_AIROHA
if ((config.position.gps_update_interval * 1000) >= (GPS_FIX_HOLD_TIME * 2)) {
uint8_t fix = reader.fixQuality();
if (fix > 0) {
if (lastFixStartMsec > 0) {
if (Throttle::isWithinTimespanMs(lastFixStartMsec, GPS_FIX_HOLD_TIME)) {
return false;
} else {
clearBuffer();
}
} else {
lastFixStartMsec = millis();
return false;
}
} else {
return false;
}
}
#endif
// By default, TinyGPS++ does not parse GPGSA lines, which give us
// the 2D/3D fixType (see NMEAGPS.h)
// At a minimum, use the fixQuality indicator in GPGGA (FIXME?)
fixQual = reader.fixQuality();
#ifndef TINYGPS_OPTION_NO_STATISTICS
if (reader.failedChecksum() > lastChecksumFailCount) {
LOG_WARN("%u new GPS checksum failures, for a total of %u", reader.failedChecksum() - lastChecksumFailCount,
reader.failedChecksum());
lastChecksumFailCount = reader.failedChecksum();
}
#endif
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
fixType = atoi(gsafixtype.value()); // will set to zero if no data
#endif
// check if GPS has an acceptable lock
if (!hasLock())
return false;
#ifdef GPS_DEBUG
LOG_DEBUG("AGE: LOC=%d FIX=%d DATE=%d TIME=%d", reader.location.age(),
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
gsafixtype.age(),
#else
0,
#endif
reader.date.age(), reader.time.age());
#endif // GPS_DEBUG
// Is this a new point or are we re-reading the previous one?
if (!reader.location.isUpdated() && !reader.altitude.isUpdated())
return false;
// check if a complete GPS solution set is available for reading
// tinyGPSDatum::age() also includes isValid() test
// FIXME
if (!((reader.location.age() < GPS_SOL_EXPIRY_MS) &&
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
(gsafixtype.age() < GPS_SOL_EXPIRY_MS) &&
#endif
(reader.time.age() < GPS_SOL_EXPIRY_MS) && (reader.date.age() < GPS_SOL_EXPIRY_MS))) {
LOG_WARN("SOME data is TOO OLD: LOC %u, TIME %u, DATE %u", reader.location.age(), reader.time.age(), reader.date.age());
return false;
}
// We know the solution is fresh and valid, so just read the data
auto loc = reader.location.value();
// Bail out EARLY to avoid overwriting previous good data (like #857)
if (toDegInt(loc.lat) > 900000000) {
#ifdef GPS_DEBUG
LOG_DEBUG("Bail out EARLY on LAT %i", toDegInt(loc.lat));
#endif
return false;
}
if (toDegInt(loc.lng) > 1800000000) {
#ifdef GPS_DEBUG
LOG_DEBUG("Bail out EARLY on LNG %i", toDegInt(loc.lng));
#endif
return false;
}
p.location_source = meshtastic_Position_LocSource_LOC_INTERNAL;
// Dilution of precision (an accuracy metric) is reported in 10^2 units, so we need to scale down when we use it
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
p.HDOP = reader.hdop.value();
p.PDOP = TinyGPSPlus::parseDecimal(gsapdop.value());
#else
// FIXME! naive PDOP emulation (assumes VDOP==HDOP)
// correct formula is PDOP = SQRT(HDOP^2 + VDOP^2)
p.HDOP = reader.hdop.value();
p.PDOP = 1.41 * reader.hdop.value();
#endif
// Discard incomplete or erroneous readings
if (reader.hdop.value() == 0) {
LOG_WARN("BOGUS hdop.value() REJECTED: %d", reader.hdop.value());
return false;
}
p.latitude_i = toDegInt(loc.lat);
p.longitude_i = toDegInt(loc.lng);
p.altitude_geoidal_separation = reader.geoidHeight.meters();
p.altitude_hae = reader.altitude.meters() + p.altitude_geoidal_separation;
p.altitude = reader.altitude.meters();
p.fix_quality = fixQual;
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
p.fix_type = fixType;
#endif
// positional timestamp
struct tm t;
t.tm_sec = reader.time.second();
t.tm_min = reader.time.minute();
t.tm_hour = reader.time.hour();
t.tm_mday = reader.date.day();
t.tm_mon = reader.date.month() - 1;
t.tm_year = reader.date.year() - 1900;
t.tm_isdst = false;
p.timestamp = gm_mktime(&t);
// Nice to have, if available
if (reader.satellites.isUpdated()) {
p.sats_in_view = reader.satellites.value();
}
if (reader.course.isUpdated() && reader.course.isValid()) {
if (reader.course.value() < 36000) { // sanity check
p.ground_track =
reader.course.value() * 1e3; // Scale the heading (in degrees * 10^-2) to match the expected degrees * 10^-5
} else {
LOG_WARN("BOGUS course.value() REJECTED: %d", reader.course.value());
}
}
if (reader.speed.isUpdated() && reader.speed.isValid()) {
p.ground_speed = reader.speed.kmph();
}
return true;
}
bool GPS::hasLock()
{
// Using GPGGA fix quality indicator
if (fixQual >= 1 && fixQual <= 5) {
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
// Use GPGSA fix type 2D/3D (better) if available
if (fixType == 3 || fixType == 0) // zero means "no data received"
#endif
return true;
}
return false;
}
bool GPS::hasFlow()
{
return reader.passedChecksum() > 0;
}
bool GPS::whileActive()
{
unsigned int charsInBuf = 0;
bool isValid = false;
#ifdef GPS_DEBUG
std::string debugmsg = "";
#endif
if (powerState != GPS_ACTIVE) {
clearBuffer();
return false;
}
#ifdef SERIAL_BUFFER_SIZE
if (_serial_gps->available() >= SERIAL_BUFFER_SIZE - 1) {
LOG_WARN("GPS Buffer full with %u bytes waiting. Flush to avoid corruption", _serial_gps->available());
clearBuffer();
}
#endif
// First consume any chars that have piled up at the receiver
while (_serial_gps->available() > 0) {
int c = _serial_gps->read();
UBXscratch[charsInBuf] = c;
#ifdef GPS_DEBUG
debugmsg += vformat("%c", (c >= 32 && c <= 126) ? c : '.');
#endif
isValid |= reader.encode(c);
if (charsInBuf > sizeof(UBXscratch) - 10 || c == '\r') {
if (strnstr((char *)UBXscratch, "$GPTXT,01,01,02,u-blox ag - www.u-blox.com*50", charsInBuf)) {
rebootsSeen++;
}
charsInBuf = 0;
} else {
charsInBuf++;
}
}
#ifdef GPS_DEBUG
if (debugmsg != "") {
LOG_DEBUG(debugmsg.c_str());
}
#endif
return isValid;
}
void GPS::enable()
{
// Clear the old scheduling info (reset the lock-time prediction)
scheduling.reset();
enabled = true;
setInterval(GPS_THREAD_INTERVAL);
scheduling.informSearching();
setPowerState(GPS_ACTIVE);
}
int32_t GPS::disable()
{
enabled = false;
setInterval(INT32_MAX);
setPowerState(GPS_OFF);
return INT32_MAX;
}
void GPS::toggleGpsMode()
{
if (config.position.gps_mode == meshtastic_Config_PositionConfig_GpsMode_ENABLED) {
config.position.gps_mode = meshtastic_Config_PositionConfig_GpsMode_DISABLED;
LOG_INFO("User toggled GpsMode. Now DISABLED");
playGPSDisableBeep();
#ifdef GNSS_AIROHA
if (powerState == GPS_ACTIVE) {
LOG_DEBUG("User power Off GPS");
digitalWrite(PIN_GPS_EN, LOW);
}
#endif
disable();
} else if (config.position.gps_mode == meshtastic_Config_PositionConfig_GpsMode_DISABLED) {
config.position.gps_mode = meshtastic_Config_PositionConfig_GpsMode_ENABLED;
LOG_INFO("User toggled GpsMode. Now ENABLED");
playGPSEnableBeep();
enable();
}
}
#endif // Exclude GPS