firmware/src/rf95/RH_RF95.cpp

625 lines
21 KiB
C++
Raw Normal View History

// RH_RF95.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF95.cpp,v 1.22 2020/01/05 07:02:23 mikem Exp mikem $
#include <RH_RF95.h>
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF95, allowing you to have
// 2 or more LORAs per Arduino
RH_RF95 *RH_RF95::_deviceForInterrupt[RH_RF95_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Stored in flash (program) memory to save SRAM
PROGMEM static const RH_RF95::ModemConfig MODEM_CONFIG_TABLE[] = {
// 1d, 1e, 26
{0x72, 0x74, 0x04}, // Bw125Cr45Sf128 (the chip default), AGC enabled
{0x92, 0x74, 0x04}, // Bw500Cr45Sf128, AGC enabled
{0x48, 0x94, 0x04}, // Bw31_25Cr48Sf512, AGC enabled
{0x78, 0xc4, 0x0c}, // Bw125Cr48Sf4096, AGC enabled
};
RH_RF95::RH_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI &spi)
: RHSPIDriver(slaveSelectPin, spi), _rxBufValid(0)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
}
bool RH_RF95::init()
{
if (!RHSPIDriver::init())
return false;
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Tell the low level SPI interface we will use SPI within this interrupt
spiUsingInterrupt(interruptNumber);
// No way to check the device type :-(
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
bool isWakeFromDeepSleep =
false; // true if we think we are waking from deep sleep AND the rf95 seems to have a valid configuration
if (!isWakeFromDeepSleep) {
// Set sleep mode, so we can also set LORA mode:
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(RH_RF95_REG_01_OP_MODE) != (RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE)) {
// Serial.println(spiRead(RH_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(RH_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(RH_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
setModeIdle();
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(434.0);
// Lowish power
setTxPower(13);
Serial.printf("IRQ flag mask 0x%x\n", spiRead(RH_RF95_REG_11_IRQ_FLAGS_MASK));
} else {
// FIXME
// restore mode base off reading RS95 registers
// Only let CPU enter deep sleep if RF95 is sitting waiting on a receive or is in idle or sleep.
}
// geeksville: we do this last, because if there is an interrupt pending from during the deep sleep, this attach will cause it
// to be taken.
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff) {
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
else
return false; // Too many devices, not enough interrupt vectors
return true;
}
void RH_RF95::prepareDeepSleep()
{
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
detachInterrupt(interruptNumber);
}
bool RH_RF95::isReceiving()
{
// 0x0b == Look for header info valid, signal synchronized or signal detected
uint8_t reg = spiRead(RH_RF95_REG_18_MODEM_STAT) & 0x1f;
// Serial.printf("reg %x\n", reg);
return _mode == RHModeRx && (reg & (RH_RF95_MODEM_STATUS_SIGNAL_DETECTED | RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED |
RH_RF95_MODEM_STATUS_HEADER_INFO_VALID)) != 0;
}
// C++ level interrupt handler for this instance
// LORA is unusual in that it has several interrupt lines, and not a single, combined one.
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
// connnected to the processor.
// We use this to get RxDone and TxDone interrupts
void RH_RF95::handleInterrupt()
{
// Read the interrupt register
uint8_t irq_flags = spiRead(RH_RF95_REG_12_IRQ_FLAGS);
// Note: there can be substantial latency between ISR assertion and this function being run, therefore
// multiple flags might be set. Handle them all
// Note: we are running the chip in continuous receive mode (currently, so RX_TIMEOUT shouldn't ever occur)
bool haveRxError = irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR);
if (haveRxError)
// if (_mode == RHModeRx && irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR))
{
_rxBad++;
clearRxBuf();
}
if ((irq_flags & RH_RF95_RX_DONE) && !haveRxError) {
// Read the RegHopChannel register to check if CRC presence is signalled
// in the header. If not it might be a stray (noise) packet.*
uint8_t crc_present = spiRead(RH_RF95_REG_1C_HOP_CHANNEL) & RH_RF95_RX_PAYLOAD_CRC_IS_ON;
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags, required before reading fifo (according to datasheet)
if (!crc_present) {
_rxBad++;
clearRxBuf();
} else {
// Have received a packet
uint8_t len = spiRead(RH_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(RH_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
// Remember the last signal to noise ratio, LORA mode
// Per page 111, SX1276/77/78/79 datasheet
_lastSNR = (int8_t)spiRead(RH_RF95_REG_19_PKT_SNR_VALUE) / 4;
// Remember the RSSI of this packet, LORA mode
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(RH_RF95_REG_1A_PKT_RSSI_VALUE);
// Adjust the RSSI, datasheet page 87
if (_lastSNR < 0)
_lastRssi = _lastRssi + _lastSNR;
else
_lastRssi = (int)_lastRssi * 16 / 15;
if (_usingHFport)
_lastRssi -= 157;
else
_lastRssi -= 164;
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
}
if (irq_flags & RH_RF95_TX_DONE) {
_txGood++;
setModeIdle();
}
if (_mode == RHModeCad && (irq_flags & RH_RF95_CAD_DONE)) {
_cad = irq_flags & RH_RF95_CAD_DETECTED;
setModeIdle();
}
// ack all interrupts, note - we did this already in the RX_DONE case above, and we don't want to do it twice
if (!(irq_flags & RH_RF95_RX_DONE)) {
// Sigh: on some processors, for some unknown reason, doing this only once does not actually
// clear the radio's interrupt flag. So we do it twice. Why?
// kevinh: turn this off until root cause is known, because it can cause missed interrupts!
// spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
}
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF95.
// 3 interrupts allows us to have 3 different devices
void RH_INTERRUPT_ATTR RH_RF95::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_RF95::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_RF95::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
// Check whether the latest received message is complete and uncorrupted
void RH_RF95::validateRxBuf()
{
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous || _rxHeaderTo == _thisAddress || _rxHeaderTo == RH_BROADCAST_ADDRESS) {
_rxGood++;
_rxBufValid = true;
}
}
bool RH_RF95::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
}
void RH_RF95::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
bool RH_RF95::send(const uint8_t *data, uint8_t len)
{
if (len > RH_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
if (!waitCAD())
return false; // Check channel activity
// Position at the beginning of the FIFO
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(RH_RF95_REG_00_FIFO, data, len);
spiWrite(RH_RF95_REG_22_PAYLOAD_LENGTH, len + RH_RF95_HEADER_LEN);
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool RH_RF95::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t registers[] = {0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10,
0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,
0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27};
uint8_t i;
for (i = 0; i < sizeof(registers); i++) {
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
#endif
return true;
}
uint8_t RH_RF95::maxMessageLength()
{
return RH_RF95_MAX_MESSAGE_LEN;
}
bool RH_RF95::setFrequency(float centre)
{
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / RH_RF95_FSTEP;
spiWrite(RH_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(RH_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(RH_RF95_REG_08_FRF_LSB, frf & 0xff);
_usingHFport = (centre >= 779.0);
return true;
}
void RH_RF95::setModeIdle()
{
if (_mode != RHModeIdle) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
}
bool RH_RF95::sleep()
{
if (_mode != RHModeSleep) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
}
void RH_RF95::setModeRx()
{
if (_mode != RHModeRx) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_RXCONTINUOUS);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
_mode = RHModeRx;
}
}
void RH_RF95::setModeTx()
{
if (_mode != RHModeTx) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_TX);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
_mode = RHModeTx;
}
}
void RH_RF95::setTxPower(int8_t power, bool useRFO)
{
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO) {
if (power > 14)
power = 14;
if (power < -1)
power = -1;
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_MAX_POWER | (power + 1));
} else {
if (power > 23)
power = 23;
if (power < 5)
power = 5;
// For RH_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// RH_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
// for 21, 22 and 23dBm
if (power > 20) {
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_ENABLE);
power -= 3;
} else {
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_DISABLE);
}
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower.
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
// but OutputPower claims it would be 17dBm.
// My measurements show 20dBm is correct
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_PA_SELECT | (power - 5));
}
}
// Sets registers from a canned modem configuration structure
void RH_RF95::setModemRegisters(const ModemConfig *config)
{
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool RH_RF95::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF95::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void RH_RF95::setPreambleLength(uint16_t bytes)
{
spiWrite(RH_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(RH_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
}
bool RH_RF95::isChannelActive()
{
// Set mode RHModeCad
if (_mode != RHModeCad) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_CAD);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x80); // Interrupt on CadDone
_mode = RHModeCad;
}
while (_mode == RHModeCad)
YIELD;
return _cad;
}
void RH_RF95::enableTCXO()
{
while ((spiRead(RH_RF95_REG_4B_TCXO) & RH_RF95_TCXO_TCXO_INPUT_ON) != RH_RF95_TCXO_TCXO_INPUT_ON) {
sleep();
spiWrite(RH_RF95_REG_4B_TCXO, (spiRead(RH_RF95_REG_4B_TCXO) | RH_RF95_TCXO_TCXO_INPUT_ON));
}
}
// From section 4.1.5 of SX1276/77/78/79
// Ferror = FreqError * 2**24 * BW / Fxtal / 500
int RH_RF95::frequencyError()
{
int32_t freqerror = 0;
// Convert 2.5 bytes (5 nibbles, 20 bits) to 32 bit signed int
// Caution: some C compilers make errors with eg:
// freqerror = spiRead(RH_RF95_REG_28_FEI_MSB) << 16
// so we go more carefully.
freqerror = spiRead(RH_RF95_REG_28_FEI_MSB);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_29_FEI_MID);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_2A_FEI_LSB);
// Sign extension into top 3 nibbles
if (freqerror & 0x80000)
freqerror |= 0xfff00000;
int error = 0; // In hertz
float bw_tab[] = {7.8, 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250, 500};
uint8_t bwindex = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4;
if (bwindex < (sizeof(bw_tab) / sizeof(float)))
error = (float)freqerror * bw_tab[bwindex] * ((float)(1L << 24) / (float)RH_RF95_FXOSC / 500.0);
// else not defined
return error;
}
int RH_RF95::lastSNR()
{
return _lastSNR;
}
///////////////////////////////////////////////////
//
// additions below by Brian Norman 9th Nov 2018
// brian.n.norman@gmail.com
//
// Routines intended to make changing BW, SF and CR
// a bit more intuitive
//
///////////////////////////////////////////////////
void RH_RF95::setSpreadingFactor(uint8_t sf)
{
if (sf <= 6)
sf = RH_RF95_SPREADING_FACTOR_64CPS;
else if (sf == 7)
sf = RH_RF95_SPREADING_FACTOR_128CPS;
else if (sf == 8)
sf = RH_RF95_SPREADING_FACTOR_256CPS;
else if (sf == 9)
sf = RH_RF95_SPREADING_FACTOR_512CPS;
else if (sf == 10)
sf = RH_RF95_SPREADING_FACTOR_1024CPS;
else if (sf == 11)
sf = RH_RF95_SPREADING_FACTOR_2048CPS;
else if (sf >= 12)
sf = RH_RF95_SPREADING_FACTOR_4096CPS;
// set the new spreading factor
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, (spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_SPREADING_FACTOR) | sf);
// check if Low data Rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setSignalBandwidth(long sbw)
{
uint8_t bw; // register bit pattern
if (sbw <= 7800)
bw = RH_RF95_BW_7_8KHZ;
else if (sbw <= 10400)
bw = RH_RF95_BW_10_4KHZ;
else if (sbw <= 15600)
bw = RH_RF95_BW_15_6KHZ;
else if (sbw <= 20800)
bw = RH_RF95_BW_20_8KHZ;
else if (sbw <= 31250)
bw = RH_RF95_BW_31_25KHZ;
else if (sbw <= 41700)
bw = RH_RF95_BW_41_7KHZ;
else if (sbw <= 62500)
bw = RH_RF95_BW_62_5KHZ;
else if (sbw <= 125000)
bw = RH_RF95_BW_125KHZ;
else if (sbw <= 250000)
bw = RH_RF95_BW_250KHZ;
else
bw = RH_RF95_BW_500KHZ;
// top 4 bits of reg 1D control bandwidth
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_BW) | bw);
// check if low data rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setCodingRate4(uint8_t denominator)
{
int cr = RH_RF95_CODING_RATE_4_5;
// if (denominator <= 5)
// cr = RH_RF95_CODING_RATE_4_5;
if (denominator == 6)
cr = RH_RF95_CODING_RATE_4_6;
else if (denominator == 7)
cr = RH_RF95_CODING_RATE_4_7;
else if (denominator >= 8)
cr = RH_RF95_CODING_RATE_4_8;
// CR is bits 3..1 of RH_RF95_REG_1D_MODEM_CONFIG1
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_CODING_RATE) | cr);
}
void RH_RF95::setLowDatarate()
{
// called after changing bandwidth and/or spreading factor
// Semtech modem design guide AN1200.13 says
// "To avoid issues surrounding drift of the crystal reference oscillator due to either temperature change
// or motion,the low data rate optimization bit is used. Specifically for 125 kHz bandwidth and SF = 11 and 12,
// this adds a small overhead to increase robustness to reference frequency variations over the timescale of the LoRa
// packet."
// read current value for BW and SF
uint8_t BW = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4; // bw is in bits 7..4
uint8_t SF = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) >> 4; // sf is in bits 7..4
// calculate symbol time (see Semtech AN1200.22 section 4)
float bw_tab[] = {7800, 10400, 15600, 20800, 31250, 41700, 62500, 125000, 250000, 500000};
float bandwidth = bw_tab[BW];
float symbolTime = 1000.0 * pow(2, SF) / bandwidth; // ms
// the symbolTime for SF 11 BW 125 is 16.384ms.
// and, according to this :-
// https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
// the LDR bit should be set if the Symbol Time is > 16ms
// So the threshold used here is 16.0ms
// the LDR is bit 3 of RH_RF95_REG_26_MODEM_CONFIG3
uint8_t current = spiRead(RH_RF95_REG_26_MODEM_CONFIG3) & ~RH_RF95_LOW_DATA_RATE_OPTIMIZE; // mask off the LDR bit
if (symbolTime > 16.0)
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current | RH_RF95_LOW_DATA_RATE_OPTIMIZE);
else
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current);
}
void RH_RF95::setPayloadCRC(bool on)
{
// Payload CRC is bit 2 of register 1E
uint8_t current = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_PAYLOAD_CRC_ON; // mask off the CRC
if (on)
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current | RH_RF95_PAYLOAD_CRC_ON);
else
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current);
}